Generalized Latent Multi-View Subspace Clustering

被引:505
|
作者
Zhang, Changqing [1 ]
Fu, Huazhu [2 ]
Hu, Qinghua [1 ]
Cao, Xiaochun [3 ]
Xie, Yuan [4 ]
Tao, Dacheng [5 ]
Xu, Dong [6 ]
机构
[1] Tianjin Univ, Coll Intelligence & Comp, Tianjin 300350, Peoples R China
[2] Incept Inst Artificial Intelligence, Abu Dhabi, U Arab Emirates
[3] Chinese Acad Sci, Inst Informat Engn, State Key Lab Informat Secur, Beijing 100093, Peoples R China
[4] Chinese Acad Sci, Inst Automat, Res Ctr Precis Sensing & Control, Beijing 100190, Peoples R China
[5] Univ Sydney, Fac Engn & Informat Technol, Sch Informat Technol, UBTECH Sydney Artificial Intelligence Ctr, 6 Cleveland St, Darlington, NSW 2008, Australia
[6] Univ Sydney, Sch Elect & Informat Engn, Sydney, NSW 2006, Australia
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
Clustering methods; Correlation; Electronic mail; Neural networks; Task analysis; Clustering algorithms; Minimization; Multi-view clustering; subspace clustering; latent representation; neural networks; ALGORITHM; SPARSE;
D O I
10.1109/TPAMI.2018.2877660
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Subspace clustering is an effective method that has been successfully applied to many applications. Here, we propose a novel subspace clustering model for multi-view data using a latent representation termed Latent Multi-View Subspace Clustering (LMSC). Unlike most existing single-view subspace clustering methods, which directly reconstruct data points using original features, our method explores underlying complementary information from multiple views and simultaneously seeks the underlying latent representation. Using the complementarity of multiple views, the latent representation depicts data more comprehensively than each individual view, accordingly making subspace representation more accurate and robust. We proposed two LMSC formulations: linear LMSC (lLMSC), based on linear correlations between latent representation and each view, and generalized LMSC (gLMSC), based on neural networks to handle general relationships. The proposed method can be efficiently optimized under the Augmented Lagrangian Multiplier with Alternating Direction Minimization (ALM-ADM) framework. Extensive experiments on diverse datasets demonstrate the effectiveness of the proposed method.
引用
收藏
页码:86 / 99
页数:14
相关论文
共 50 条
  • [1] Latent Multi-view Subspace Clustering
    Zhang, Changqing
    Hu, Qinghua
    Fu, Huazhu
    Zhu, Pengfei
    Cao, Xiaochun
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 4333 - 4341
  • [2] Generalized Multi-View Collaborative Subspace Clustering
    Lan, Mengcheng
    Meng, Min
    Yu, Jun
    Wu, Jigang
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (06) : 3561 - 3574
  • [3] Latent shared representation for multi-view subspace clustering
    Huang, Baifu
    Yuan, Haoliang
    Lai, Loi Lei
    [J]. 2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [4] Multi-view Subspace Clustering via Joint Latent Representations
    Dong, Wenhua
    Wu, Xiao-jun
    Xu, Tianyang
    [J]. NEURAL PROCESSING LETTERS, 2022, 54 (03) : 1879 - 1901
  • [5] Multi-view Subspace Clustering via Joint Latent Representations
    Wenhua Dong
    Xiao-jun Wu
    Tianyang Xu
    [J]. Neural Processing Letters, 2022, 54 : 1879 - 1901
  • [6] Multi-View Subspace Clustering
    Gao, Hongchang
    Nie, Feiping
    Li, Xuelong
    Huang, Heng
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 4238 - 4246
  • [7] Latent multi-view subspace clustering based on Laplacian regularized representation
    Guo, Wei
    Che, Hangjun
    Leung, Man-Fai
    Mu, Nankun
    Dai, Xiangguang
    Feng, Yuming
    [J]. 2023 15TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE, ICACI, 2023,
  • [8] Latent Complete Row Space Recovery for Multi-View Subspace Clustering
    Tao, Hong
    Hou, Chenping
    Qian, Yuhua
    Zhu, Jubo
    Yi, Dongyun
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 8083 - 8096
  • [9] Joint learning of latent subspace and structured graph for multi-view clustering
    Wang, Yinuo
    Guo, Yu
    Wang, Zheng
    Wang, Fei
    [J]. Pattern Recognition, 2024, 154
  • [10] Latent Low-Rank Sparse Multi-view Subspace Clustering
    Zhang Z.
    Cao R.
    Li C.
    Cheng S.
    [J]. Li, Chen (lynnlc@126.com), 1600, Science Press (33): : 344 - 352