A NOVEL HIERARCHICAL METHOD FOR CHANGE DETECTION IN MULTITEMPORAL HYPERSPECTRAL IMAGES

被引:2
|
作者
Liu, Sicong [1 ]
Bruzzone, Lorenzo [1 ]
Bovolo, Francesca [1 ]
Du, Peijun
机构
[1] Univ Trento, Dept Informat Engn & Comp Sci, Trento, Italy
关键词
Change detection; hyperspectral images; multi-temporal analysis; multiple changes; hierarchical analysis;
D O I
10.1109/IGARSS.2013.6721285
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper addressed the change-detection problem in multitemporal hyperspectral remote sensing images (CD-HS). The concept of "change" in multitemporal hyperspectral images is analyzed from the viewpoint of single pixel spectral signal. A novel hierarchical change-detection approach is proposed by considering both the change magnitude and spectral change information, which aims to identify the change classes having discriminable spectral behaviors. The proposed method is developed in an unsupervised way thus to provide a solution for real CD-HS cases, for which reference samples are often not available. Experimental results obtained on multitemporal Hyperion hyperspectral images confirm the effectiveness of the proposed change-detection approach.
引用
收藏
页码:823 / 826
页数:4
相关论文
共 50 条
  • [1] Hierarchical Unsupervised Change Detection in Multitemporal Hyperspectral Images
    Liu, Sicong
    Bruzzone, Lorenzo
    Bovolo, Francesca
    Du, Peijun
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (01): : 244 - 260
  • [2] A Novel Change Detection Method for Multitemporal Hyperspectral Images Based on Binary Hyperspectral Change Vectors
    Marinelli, Daniele
    Bovolo, Francesca
    Bruzzone, Lorenzo
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (07): : 4913 - 4928
  • [3] A NOVEL CHANGE DETECTION METHOD FOR MULTITEMPORAL HYPERSPECTRAL IMAGES BASED ON A DISCRETE REPRESENTATION OF THE CHANGE INFORMATION
    Marinelli, Daniele
    Bovolo, Francesca
    Bruzzone, Lorenzo
    [J]. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 161 - 164
  • [4] MULTITEMPORAL SPECTRAL UNMIXING FOR CHANGE DETECTION IN HYPERSPECTRAL IMAGES
    Liu, Sicong
    Bruzzone, Lorenzo
    Bovolo, Francesca
    Du, Peijun
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 4165 - 4168
  • [5] GPU Framework for Change Detection in Multitemporal Hyperspectral Images
    Javier López-Fandiño
    Dora B. Heras
    Francisco Argüello
    Mauro Dalla Mura
    [J]. International Journal of Parallel Programming, 2019, 47 : 272 - 292
  • [6] GPU Framework for Change Detection in Multitemporal Hyperspectral Images
    Lopez-Fandino, Javier
    Heras, Dora B.
    Argueello, Francisco
    Dalla Mura, Mauro
    [J]. INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING, 2019, 47 (02) : 272 - 292
  • [7] A SELF-SUPERVISED HIERARCHICAL CLUSTERING NETWORK FOR MULTIPLE CHANGE DETECTION IN MULTITEMPORAL HYPERSPECTRAL IMAGES
    Liang, Chengfang
    Chen, Zhao
    [J]. 2022 12TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2022,
  • [8] An Unsupervised Symmetric Tensor Network for Change Detection in Multitemporal Hyperspectral Images
    Liang, Chengfang
    Chen, Zhao
    [J]. EARTH AND SPACE: FROM INFRARED TO TERAHERTZ, ESIT 2022, 2023, 12505
  • [9] Sparse Unmixing-Based Change Detection for Multitemporal Hyperspectral Images
    Erturk, Alp
    Iordache, Marian-Daniel
    Plaza, Antonio
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (02) : 708 - 719
  • [10] A variational change detection method for multitemporal SAR images
    Chen, Yin
    Cremers, Armin B.
    Cao, Zhiguo
    [J]. REMOTE SENSING LETTERS, 2014, 5 (04) : 342 - 351