GLOBAL STRONG SOLUTION TO THE DENSITY-DEPENDENT INCOMPRESSIBLE FLOW OF LIQUID CRYSTALS

被引:0
|
作者
Li, Xiaoli [1 ]
Wang, Dehua [2 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[2] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
基金
中国国家自然科学基金; 中国博士后科学基金; 美国国家科学基金会;
关键词
Liquid crystals; incompressible flow; density-dependent; global strong solution; existence and uniqueness; NAVIER-STOKES EQUATIONS; PARTIAL REGULARITY; WEAK SOLUTIONS; EXISTENCE; SYSTEM; MODEL;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The initial-boundary value problem for the density-dependent incompressible flow of liquid crystals is studied in a three-dimensional bounded smooth domain. For the initial density away from vacuum, the existence and uniqueness are established for both the local strong solution with large initial data and the global strong solution with 'small' data. It is also proved that when the strong solution exists, a weak solution with the same data must be equal to the unique strong solution.
引用
收藏
页码:2301 / 2338
页数:38
相关论文
共 50 条