A review of the Wigner distribution function approach to analyse electromagnetic field

被引:1
|
作者
Madenoor Ramapriya, Deepthee [1 ]
Barman, Tamal [2 ]
Appaiah, Mayur [3 ]
Roy, Dyuti [4 ]
机构
[1] BMS Coll Engn, Dept Math, Bangalore 19, Karnataka, India
[2] Univ Nottingham, Dept Mech Engn, Nottingham, England
[3] BMS Coll Engn, Dept Ind Engn & Management, Bangalore, Karnataka, India
[4] Indian Inst Sci Educ & Res IISER, Dept Math, Tirupati, Andhra Pradesh, India
关键词
Correlation function; Wigner transformation; inverse Methods; Stochastic noise fields; DYNAMICAL ENERGY ANALYSIS; OPTICS; REPRESENTATION;
D O I
10.1080/09205071.2021.1924293
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The paper contributes by developing computational and reviewing theoretical methods to propagate electromagnetic fields in free space, while taking account of the fact that the sources are typically noisy and statistically characterized. The main focus is to develop propagators for correlation functions, which characterize the average properties of the wave field when compared at two nearby points. The methods used will involve Green function techniques, numerical approaches to wave propagation. The theoretical model involves analysing wave propagation in phase space by manipulating the relationship between the field-field correlation function and the Wigner distribution function in a purely statistical manner.
引用
收藏
页码:1939 / 1957
页数:19
相关论文
共 50 条
  • [1] An optical entropy approach to the Wigner distribution function
    Torroba, R
    Climent, V
    Andres, P
    OPTIK, 1996, 103 (04): : 148 - 150
  • [2] An optical entropy approach to the Wigner distribution function
    Torroba, R.
    Climent, V.
    Andres, P.
    Optik (Jena), 1996, 103 (04): : 148 - 150
  • [3] The Wigner functional of the electromagnetic field
    Bialynicki-Birula, I
    OPTICS COMMUNICATIONS, 2000, 179 (1-6) : 237 - 246
  • [4] The Wigner Function as Distribution Function
    M. Revzen
    Foundations of Physics, 2006, 36 : 546 - 562
  • [5] THE QUASI-CLASSICAL EQUILIBRIUM WIGNER DISTRIBUTION FUNCTION OF AN ELECTRON-GAS IN A NONUNIFORM ELECTROMAGNETIC-FIELD
    DODONOV, VV
    MANKO, VI
    OSSIPOV, DL
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1985, 132 (2-3) : 269 - 283
  • [6] The Wigner function as distribution function
    Revzen, M.
    FOUNDATIONS OF PHYSICS, 2006, 36 (04) : 546 - 562
  • [7] THE WIGNER DISTRIBUTION FUNCTION
    IAFRATE, GJ
    GRUBIN, HL
    FERRY, DK
    PHYSICS LETTERS A, 1982, 87 (04) : 145 - 148
  • [8] A Wigner quasi-distribution function for charged particles in classical electromagnetic fields
    Levanda, M
    Fleurov, V
    ANNALS OF PHYSICS, 2001, 292 (02) : 199 - 231
  • [9] Wigner function properties for electromagnetic systems
    Perepelkin, E. E.
    Sadovnikov, B. I.
    Inozemtseva, N. G.
    Afonin, P., V
    PHYSICAL REVIEW A, 2024, 110 (02)
  • [10] A new approach to analyse magnetic field distribution in PM motors
    Oraee, H
    1997 CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, CONFERENCE PROCEEDINGS, VOLS I AND II: ENGINEERING INNOVATION: VOYAGE OF DISCOVERY, 1997, : 874 - 877