Homogeneous nonrelativistic geometries as coset spaces

被引:22
|
作者
Grosvenor, Kevin T. [1 ]
Hartong, Jelle [2 ,3 ]
Keeler, Cynthia [4 ]
Obers, Niels A. [1 ]
机构
[1] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen O, Denmark
[2] Univ Amsterdam, Inst Theoret Phys, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
[3] Univ Amsterdam, Delta Inst Theoret Phys, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
[4] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA
基金
欧盟地平线“2020”;
关键词
coset space; Newton-Cartan geometry; Bargmann algebra; Newton-Hooke algebra; Schrodinger algebra; ENTANGLEMENT ENTROPY; SYMMETRIES; MECHANICS; ALGEBRAS;
D O I
10.1088/1361-6382/aad0f9
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We generalize the coset procedure of homogeneous spacetimes in (pseudo-) Riemannian geometry to non-Lorentzian geometries. These are manifolds endowed with nowhere vanishing invertible vielbeins that transform under local non-Lorentzian tangent space transformations. In particular we focus on nonrelativistic symmetry algebras that give rise to (torsional) Newton-Cartan geometries, for which we demonstrate how the Newton-Cartan metric complex is determined by degenerate co- and contravariant symmetric bilinear forms on the coset. In specific cases we also show the connection of the resulting nonrelativistic coset spacetimes to pseudo-Riemannian cosecs via Intinii-Wigner contraction of relativistic algebras as well as null reduction. Our construction is of use for example when considering limits of the AdS/CFT correspondence in which nonrelativistic spacetimes appear as gravitational backgrounds for nonrelativistic string or gravity theories.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] SUPERSTRING COMPACTIFICATION ON HOMOGENEOUS COSET SPACES WITH TORSION
    CASTELLANI, L
    LUST, D
    [J]. NUCLEAR PHYSICS B, 1988, 296 (01) : 143 - 156
  • [2] Basic coset geometries
    Giudici, Michael
    Pearce, Geoffrey
    Praeger, Cheryl E.
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2012, 36 (04) : 561 - 594
  • [3] The spectrum of the Dirac operator on coset spaces with homogeneous gauge fields
    Dolan, BP
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2003, (05):
  • [4] Basic coset geometries
    Michael Giudici
    Geoffrey Pearce
    Cheryl E. Praeger
    [J]. Journal of Algebraic Combinatorics, 2012, 36 : 561 - 594
  • [5] Thurston geometries on bases of bundles of homogeneous spaces
    Gorbatsevich, VV
    [J]. IZVESTIYA MATHEMATICS, 1999, 63 (04) : 667 - 686
  • [6] Extending the nonrelativistic string AdS coset
    Fontanella, Andrea
    Garcia, Juan Miguel Nieto
    [J]. PHYSICAL REVIEW D, 2022, 106 (12)
  • [7] Coset space actions for nonrelativistic strings
    Fontanella, Andrea
    van Tongeren, Stijn J.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (06)
  • [8] Coset space actions for nonrelativistic strings
    Andrea Fontanella
    Stijn J. van Tongeren
    [J]. Journal of High Energy Physics, 2022
  • [9] Sub-Riemannian geometries on compact homogeneous spaces
    Gorbatsevich, V. V.
    [J]. IZVESTIYA MATHEMATICS, 2014, 78 (03) : 459 - 474
  • [10] Homogeneous hypercomplex structures II-Coset spaces of compact Lie groups
    Dimitrov, George
    Tsanov, Vasil
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2021, 165