Removal of hydroquinone from water by electrocoagulation using flow cell and optimization by response surface methodology

被引:28
|
作者
Prabhakaran, D. [2 ]
Basha, C. A. [1 ]
Kannadasan, T. [3 ]
Aravinthan, P. [4 ]
机构
[1] CSIR, Cent Electrochem Res Inst, Karaikkudi 630006, Tamil Nadu, India
[2] Coimbatore Inst Technol, Coimbatore, Tamil Nadu, India
[3] Anna Univ Coimbatore, Res Ctr, Coimbatore, Tamil Nadu, India
[4] Covanta Samalpatti Operating Private Ltd, Safety Hlth & Environm Dept, Parandapalli Village, India
关键词
Hydroquinone; electrocoagulation; mono and bipolar flow cell; response surface method; TEXTILE WASTE-WATER; PHOTOCATALYTIC DEGRADATION; COAGULATION; SEPARATION; EFFLUENTS; CU2+;
D O I
10.1080/10934520903540174
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this study, hydroquinone was removed from water by electrocoagulation using flow electrolyzer in mono polar and bipolar configurations in a batch recirculation mode of operation. Treatment performances of such effluents have been evaluated in terms of chemical oxygen demand removal. The effect of important operating parameters such as current density, flow rate, concentration of hydroquinone and supporting electrolyte on the pollutant removal and energy consumption is critically evaluated. The experimental data were analyzed using response surface methodology (RSM). Maximum COD removal in monopolar configuration of 80.95% was noticed at condition of supporting electrolyte concentration 2.67 g L-1, flow rate 27 mL min(-1), current density 0.7 A dm(-2) at energy consumption of 2.36 kWh per kg of COD for the 1000 mg L-1 of hydroquinone concentration. In the case of bipolar configuration a maximum COD removal of 87.13 was noticed at: supporting electrolyte concentration 4 g L-1, flow rate 29.15 mL min(-1), current density 1 Adm(-2) at energy consumption of 8.495 kWh per kg of COD for the same hydroquinone concentration.
引用
收藏
页码:400 / 412
页数:13
相关论文
共 50 条
  • [1] Optimization of Electrocoagulation Process for the Removal of Chromium from Simulated Water Using the Response Surface Methodology
    Amitesh
    Dohare, Devendra
    Jyoti, Ghoshna
    Rekhete, Chhaya
    Dubey, Savita
    Prajapati, Abhinesh Kumar
    [J]. JOURNAL OF WATER CHEMISTRY AND TECHNOLOGY, 2023, 45 (05) : 429 - 439
  • [2] Optimization of Electrocoagulation Process for the Removal of Chromium from Simulated Water Using the Response Surface Methodology
    Devendra Amitesh
    Ghoshna Dohare
    Chhaya Jyoti
    Savita Rekhete
    Abhinesh Kumar Dubey
    [J]. Journal of Water Chemistry and Technology, 2023, 45 : 429 - 439
  • [3] Optimization of arsenic removal from drinking water by electrocoagulation batch process using response surface methodology
    Kobya, M.
    Demirbas, E.
    Gebologlu, U.
    Oncel, M. S.
    Yildirim, Y.
    [J]. DESALINATION AND WATER TREATMENT, 2013, 51 (34-36) : 6676 - 6687
  • [4] Removal of Nitroaniline From Water/Ethanol by Electrocoagulation Using Response Surface Methodology
    Tamne, Guy Bertrand
    Nanseu-Njiki, Charles Peguy
    Bodoki, Ede
    Sandulescu, Robert
    Oprean, Radu
    Ngameni, Emmanuel
    [J]. CLEAN-SOIL AIR WATER, 2016, 44 (04) : 430 - 437
  • [5] Optimization of lead removal by electrocoagulation from aqueous solution using response surface methodology
    Assadi, Ali
    Fazli, Mehran Mohammadian
    Emamjomeh, Mohammad Mehdi
    Ghasemi, Maryam
    [J]. DESALINATION AND WATER TREATMENT, 2016, 57 (20) : 9375 - 9382
  • [6] Optimization of the electrocoagulation process for sulfate removal using response surface methodology
    Hossini, Hooshyar
    Makhdoumi, Pouran
    Rastegar, Seyed Omid
    Mohammadi-Moghadam, Fazel
    Ghaffari, Hamid Reza
    Javid, Allahbakhsh
    Mirzaei, Nezam
    [J]. BULGARIAN CHEMICAL COMMUNICATIONS, 2015, 47 : 63 - 71
  • [7] Removal of Turbidity from Domestic Wastewater Using Electrocoagulation: Optimization with Response Surface Methodology
    Million Ebba Bote
    Wendesen Mekonin Desta
    [J]. Chemistry Africa, 2022, 5 : 123 - 134
  • [8] Removal of Turbidity from Domestic Wastewater Using Electrocoagulation: Optimization with Response Surface Methodology
    Bote, Million Ebba
    Desta, Wendesen Mekonin
    [J]. CHEMISTRY AFRICA-A JOURNAL OF THE TUNISIAN CHEMICAL SOCIETY, 2022, 5 (01): : 123 - 134
  • [9] The optimization of Cr(VI) reduction and removal by electrocoagulation using response surface methodology
    Oelmez, Tugba
    [J]. JOURNAL OF HAZARDOUS MATERIALS, 2009, 162 (2-3) : 1371 - 1378
  • [10] Optimization and modelling using the response surface methodology (RSM) for ciprofloxacin removal by electrocoagulation
    Barisci, Sibel
    Turkay, Ozge
    [J]. WATER SCIENCE AND TECHNOLOGY, 2016, 73 (07) : 1673 - 1679