Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge

被引:263
|
作者
Li, Hong-Li [1 ]
Zhang, Long [1 ]
Hu, Cheng [1 ]
Jiang, Yao-Lin [1 ,2 ]
Teng, Zhidong [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
[2] Xi An Jiao Tong Univ, Dept Math, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Global asymptotic stability; Fractional-order; Predator-prey model; Prey refuge; STABILITY; SYSTEMS; BIFURCATION;
D O I
10.1007/s12190-016-1017-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a fractional-order predator-prey model incorporating a prey refuge is proposed. We first prove the existence, uniqueness, non-negativity and boundedness of the solutions for the considered model. Moreover, we also analyze the existence of various equilibrium points, and some sufficient conditions are derived to ensure the global asymptotic stability of the predator-extinction equilibrium point and coexistence equilibrium point. Finally, some numerical simulations are carried out for illustrating the analytic results.
引用
收藏
页码:435 / 449
页数:15
相关论文
共 50 条
  • [1] Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge
    Hong-Li Li
    Long Zhang
    Cheng Hu
    Yao-Lin Jiang
    Zhidong Teng
    Journal of Applied Mathematics and Computing, 2017, 54 : 435 - 449
  • [2] Dynamical analysis of a fractional-order predator-prey model incorporating a constant prey refuge and nonlinear incident rate
    Maji, Chandan
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2022, 8 (01) : 47 - 57
  • [3] Dynamics analysis of a predator-prey fractional-order model incorporating predator cannibalism and refuge
    Rayungsari, Maya
    Suryanto, Agus
    Kusumawinahyu, Wuryansari Muharini
    Darti, Isnani
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2023, 9
  • [4] Stability analysis of a fractional-order predator-prey model incorporating a constant prey refuge and feedback control
    Li, Hong-Li
    Muhammadhaji, Ahmadjan
    Zhang, Long
    Teng, Zhidong
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [5] Dynamical analysis of a fractional-order predator–prey model incorporating a constant prey refuge and nonlinear incident rate
    Chandan Maji
    Modeling Earth Systems and Environment, 2022, 8 : 47 - 57
  • [6] Dynamical Analysis of a Predator-Prey Model Incorporating Predator Cannibalism and Refuge
    Rayungsari, Maya
    Suryanto, Agus
    Kusumawinahyu, Wuryansari Muharini
    Darti, Isnani
    AXIOMS, 2022, 11 (03)
  • [7] Impact of fear effect in a fractional-order predator-prey system incorporating constant prey refuge
    Maji, Chandan
    NONLINEAR DYNAMICS, 2022, 107 (01) : 1329 - 1342
  • [8] Periodic pulse control of Hopf bifurcation in a fractional-order delay predator-prey model incorporating a prey refuge
    Liu, Xiuduo
    Fang, Hui
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [9] The study on the complex nature of a predator-prey model with fractional-order derivatives incorporating refuge and nonlinear prey harvesting
    Nisar, Kottakkaran Sooppy
    Kumar, G. Ranjith
    Ramesh, K.
    AIMS MATHEMATICS, 2024, 9 (05): : 13492 - 13507
  • [10] Modeling and dynamical analysis of a discretized fractional-order predator-prey system with refuge effect
    Xiao Zhu
    Xianyi Li
    Dengfeng Wang
    Enrui Zhang
    Changyi Chi
    Advances in Continuous and Discrete Models, 2025 (1):