High-Resolution Radar Imaging for Non-Sparse Scatterers by the Combination of Non-Convex Regularization and Total Variation

被引:0
|
作者
Wang, Tianyun [1 ]
Liu, Bing [1 ]
Zhao, Wenhua [1 ]
Cong, Bo [1 ]
Ling, Xiaodong [1 ]
Liu, Yong [1 ]
机构
[1] China Satellite Maritime Tracking & Controlling D, Jiangyin, Peoples R China
基金
中国国家自然科学基金;
关键词
High-resolution imaging; compressed sensing; extended target; non-convex regularization; total variation; RECOVERY; IMAGES;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Most existing compressed sensing (CS) based radar imaging methods are based on the assumption that the targets are sparse enough, while in practice the targets are often spatially extended, which would degrade their inversion performances severely. In fact, the concentrations of the corresponding strong scatterers always form certain regions in high-resolution radar. Therefore, there still exist dependence and redundancy needed to exploit. In this paper, by utilizing the sparsity and continuity property of the targets, we propose a novel CS-based method for the radar imaging of two dimensional non-sparse scatterers, which is combining non-convex regularization and total varwtion constraint. Experimental results verify the effectiveness of the proposed method.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Compressed Sensing Reconstruction Based on Combination of Group Sparse Total Variation and Non-Convex Regularization
    Yan, Ting
    Du, Hongwei
    Jin, Jiaquan
    Zhi, Debo
    Qiu, Bensheng
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2018, 8 (06) : 1233 - 1242
  • [2] Efficient general sparse denoising with non-convex sparse constraint and total variation regularization
    Deng, Shi-Wen
    Han, Ji-Qing
    DIGITAL SIGNAL PROCESSING, 2018, 78 : 259 - 264
  • [3] Non-convex Total Variation Regularization for Convex Denoising of Signals
    Selesnick, Ivan
    Lanza, Alessandro
    Morigi, Serena
    Sgallari, Fiorella
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2020, 62 (6-7) : 825 - 841
  • [4] Non-convex Total Variation Regularization for Convex Denoising of Signals
    Ivan Selesnick
    Alessandro Lanza
    Serena Morigi
    Fiorella Sgallari
    Journal of Mathematical Imaging and Vision, 2020, 62 : 825 - 841
  • [5] High Resolution ISAR Imaging Using Homotopic Non-Convex Regularization
    Wang, Tianyun
    Liu, Bing
    Cong, Bo
    Ling, Xiaodong
    Liu, Yong
    2017 16TH INTERNATIONAL CONFERENCE ON OPTICAL COMMUNICATIONS & NETWORKS (ICOCN 2017), 2017,
  • [6] Magnetic resonance imaging reconstruction via non-convex total variation regularization
    Shen, Marui
    Li, Jincheng
    Zhang, Tao
    Zou, Jian
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2021, 31 (01) : 412 - 424
  • [7] Sparse Regularization with a Non-Convex Penalty for SAR Imaging and Autofocusing
    Zhang, Zi-Yao
    Pappas, Odysseas
    Rizaev, Igor G.
    Achim, Alin
    REMOTE SENSING, 2022, 14 (09)
  • [8] Convex 1-D Total Variation Denoising with Non-convex Regularization
    Selesnick, Ivan W.
    Parekh, Ankit
    Bayram, Ilker
    IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (02) : 141 - 144
  • [9] Non-convex sparse regularization for impact force identification
    Qiao, Baijie
    Ao, Chunyan
    Mao, Zhu
    Chen, Xuefeng
    JOURNAL OF SOUND AND VIBRATION, 2020, 477
  • [10] Inverse Synthetic Aperture Radar Imaging Based on the Non-Convex Regularization Model
    Zhao, Yanan
    Yang, Fengyuan
    Wang, Chao
    Ye, Fangjie
    Zhu, Feng
    Liu, Yu
    RADIOENGINEERING, 2024, 33 (01) : 54 - 61