共 50 条
Characterization of PCB-degrading bacteria immobilized in polyurethane foam
被引:16
|作者:
Na, K
Lee, Y
Lee, W
Huh, Y
Lee, J
Lee, J
Kubo, M
Chung, S
[1
]
机构:
[1] Chonnam Natl Univ, Dept Environm Engn, Kwangju 500757, South Korea
[2] Kwangju Inst Sci & Technol, Dept Mat Sci & Engn, Kwangju 506303, South Korea
[3] Ritsumeikan Univ, Dept Biosci & Technol, Fac Sci & Engn, Kusatsu, Shiga 52577, Japan
关键词:
PCBs;
Aroclor;
1242;
polyurethane foam;
immobilization;
prepolymer;
D O I:
10.1016/S1389-1723(01)80003-7
中图分类号:
Q81 [生物工程学(生物技术)];
Q93 [微生物学];
学科分类号:
071005 ;
0836 ;
090102 ;
100705 ;
摘要:
This study is carried out to investigate (1) conditions for the synthesis of polyurethane foam to be used for immobilizing microorganisms, (2) the viability of microorganisms immobilized simultaneously into the pores of a polyurethane foam when the foam is synthesized, and (3) the difference in the ability to degrade PCBs between the immobilized and suspended microorganisms. The results of this study show that polyurethane foam is suitable for synthesizing 10% NCO-prepolymer, water and surfactant in the ratio of 100:2.6:1.2 (w/w), respectively, and the viability of microorganisms (input microbes) immobilized in the foam is high. The input microbes, designated as strain SY5, are isolated from a municipal sewage treatment plant. In addition, immobilized strain SY5 degrades 5-40% more PCB of a PCB mixture (Aroclor 1242) than the suspended strain SY5.
引用
收藏
页码:368 / 373
页数:6
相关论文