On the Theorem of the Primitive Element with Applications to the Representation Theory of Associative and Lie Algebras

被引:10
|
作者
Cagliero, Leandro [1 ]
Szechtman, Fernando [2 ]
机构
[1] Univ Nacl Cordoba, FAMAF, CIEM CONICET, RA-5000 Cordoba, Argentina
[2] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
uniserial module; Lie algebra; associative algebra; primitive element; FIELD; RINGS;
D O I
10.4153/CMB-2013-046-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe all finite dimensional uniserial representations of a commutative associative (resp. abelian Lie) algebra over a perfect (resp. sufficiently large perfect) field. In the Lie case the size of the field depends on the answer to following question, considered and solved in this paper. Let K/F be a finite separable field extension and let x, y is an element of K. When is F[x, y] = F[alpha x + beta y] for some nonzero elements alpha, beta is an element of F?
引用
收藏
页码:735 / 748
页数:14
相关论文
共 50 条