Mapping of shallow landslides with object-based image analysis from unmanned aerial vehicle data

被引:38
|
作者
Comert, Resul [1 ]
Avdan, Ugur [2 ]
Gorum, Tolga [3 ]
Nefeslioglu, Hakan A. [4 ]
机构
[1] Gumushane Univ, Dept Geomat Engn, Gumushane, Turkey
[2] Eskisehir Tech Univ, Inst Earth & Space Sci, Tepebasi, Turkey
[3] Istanbul Tech Univ, Eurasia Inst Earth Sci, Istanbul, Turkey
[4] Hacettepe Univ, Dept Geol Engn, Ankara, Turkey
关键词
Object-based image analysis; UAV; Landslide; Kurucasile (Bartin); Cayeli (Rite); LIDAR DATA; CLASSIFICATION; PHOTOGRAPHS; INVENTORY;
D O I
10.1016/j.enggeo.2019.105264
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
The Black Sea Region of Turkey is one of the most landslide prone areas due to its high slope topography, heavy rainfall, and highly weathered hillslope material conditions. Preparation of landslide inventory maps is the first step in producing landslide susceptibility maps. Ground-based methods for mapping landslide occurrences are time-consuming and expensive. Additionally, landslide mapping based on satellite imageries and aerial photographs has some limitations, including climatic conditions, cost, and limited repetitive measurement capacity. Visual interpretation-based landslide mapping, which is based on satellite imageries and aerial photographs, is a time-consuming procedure that requires an experience-based expert opinion. Therefore, the data acquisition based on unmanned aerial vehicle (UAV) and landslide event inventory maps using an object-based classification approach can be superior to other methods in terms of speed and cost. In this study, we developed a semiautomatic model using object-based image analyses for rapid mapping of shallow landslides from the data obtained from UAVs after major landslide events in the Black Sea Region of Turkey. For this purpose, two test sites-Kurucasile (Bartin) and Cayeli (Rize)-were selected. Landslide mapping models were developed in the investigation sites, and the performance of the models was evaluated. The landslides' data obtained with the developed models were compared to the landslides' data produced by the experts. The comparison process revealed that landslides mapped by using UAV data have an accuracy rate higher than 86% according to the number of landslides and 83% according to the landslide area.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Mapping skips in sugarcane fields using object-based analysis of unmanned aerial vehicle (UAV) images
    Wachholz de Souza, Carlos Henrique
    Camargo Lamparelli, Rubens Augusto
    Rocha, Jansle Vieira
    Graziano Magalhaes, Paulo Sergio
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2017, 143 : 49 - 56
  • [2] Forest Mapping Through Object-based Image Analysis of Multispectral and LiDAR Aerial Data
    Machala, Martin
    Zejdova, Lucie
    [J]. EUROPEAN JOURNAL OF REMOTE SENSING, 2014, 47 : 117 - 131
  • [3] Mapping and Classification of Ecologically Sensitive Marine Habitats Using Unmanned Aerial Vehicle (UAV) Imagery and Object-Based Image Analysis (OBIA)
    Ventura, Daniele
    Bonifazi, Andrea
    Gravina, Maria Flavia
    Belluscio, Andrea
    Ardizzone, Giandomenico
    [J]. REMOTE SENSING, 2018, 10 (09)
  • [4] Fusion of pixel and object-based features for weed mapping using unmanned aerial vehicle imagery
    Gao, Junfeng
    Liao, Wenzhi
    Nuyttens, David
    Lootens, Peter
    Vangeyte, Juergen
    Pizurica, Aleksandra
    He, Yong
    Pieters, Jan G.
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 67 : 43 - 53
  • [5] Semi-automatic Tree Detection from Images of Unmanned Aerial Vehicle Using Object-Based Image Analysis Method
    Serdar Selim
    Namik Kemal Sonmez
    Mesut Coslu
    Isin Onur
    [J]. Journal of the Indian Society of Remote Sensing, 2019, 47 : 193 - 200
  • [6] Semi-automatic Tree Detection from Images of Unmanned Aerial Vehicle Using Object-Based Image Analysis Method
    Selim, Serdar
    Sonmez, Namik Kemal
    Coslu, Mesut
    Onur, Isin
    [J]. JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2019, 47 (02) : 193 - 200
  • [7] ANALYSIS OF MULTISPECTRAL IMAGERY FROM UNMANNED AERIAL VEHICLE (UAV) USING OBJECT-BASED IMAGE ANALYSIS FOR DETECTION OF Ganoderma DISEASE IN OIL PALM
    Izzuddin, M. A.
    Hamzah, A.
    Nisfariza, M. N.
    Idris, A. S.
    [J]. JOURNAL OF OIL PALM RESEARCH, 2020, 32 (03): : 497 - 508
  • [8] Texture and Scale in Object-Based Analysis of Subdecimeter Resolution Unmanned Aerial Vehicle (UAV) Imagery
    Laliberte, Andrea S.
    Rango, Albert
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (03): : 761 - 770
  • [9] Vegetation mapping using hierarchical object-based image analysis applied to aerial imagery and lidar data
    Uyeda, Kellie A.
    Warkentin, Kelsey K.
    Stow, Douglas A.
    O'Leary, John F.
    Snavely, Rachel A.
    Lambert, Julie
    Bolick, Leslie A.
    O'Connor, Kimberly
    Munson, Bryan
    Loerch, Andrew C.
    [J]. APPLIED VEGETATION SCIENCE, 2020, 23 (01) : 80 - 93
  • [10] Deciduous tree species classification using object-based analysis and machine learning with unmanned aerial vehicle multispectral data
    Franklin, Steven E.
    Ahmed, Oumer S.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2018, 39 (15-16) : 5236 - 5245