OPTIMAL HARVESTING AND STABILITY ANALYSIS IN A LESLIE-GOWER DELAYED PREDATOR-PREY MODEL

被引:0
|
作者
Ndzana, M. Onana [1 ,2 ,3 ,4 ,5 ]
Tewa, J. J. [2 ,3 ,4 ,5 ]
Bah, A. [6 ]
Mewoli, B. [7 ]
机构
[1] Univ Douala, Fac Sci, Dept Math & Comp Sci, Lab Math, POB 24157, Douala, Cameroon
[2] IRD, UMI 209, Bondy, France
[3] UPMC, UMMISCO, Bondy, France
[4] Team GRIMCAPE, Yaounde, Cameroon
[5] Univ Yaounde I, African Ctr Excellence Informat & Commun Technol, Yaounde, Cameroon
[6] UCAD, Ecole Super Polytech, Dakar, Senegal
[7] Univ Yaounde I, Fac Sci, Dept Math, Yaounde, Cameroon
关键词
harvesting; Hopf bifurcation; retarded optimal control; stability analysis; BIFURCATION-ANALYSIS; GLOBAL STABILITY; DYNAMICS; SYSTEM; SUBJECT; STATE;
D O I
10.28919/cmbn/4075
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A delayed Leslie-Gower predator-prey model with continuous threshold prey harvesting is studied. Existence and local stability of the positive equilibrium of the system with or without delay are completely determined in the parameter plane. Considering delay as parameter, we investigate the effect of delay on stability of the coexisting equilibrium. It is observed that there are stability switches and a Hopf bifurcation occurs when the delay crosses some critical values. Employing the normal form theory, the direction and stability of the Hopf bifurcations are explicitly determined by the parameters of the system. Optimal harvesting is also investigated and some numerical simulations are given to support and extend our theoretical results.
引用
收藏
页数:41
相关论文
共 50 条
  • [1] Stability and Optimal Harvesting of Modified Leslie-Gower Predator-Prey Model
    Toaha, S.
    Azis, M. I.
    2ND INTERNATIONAL CONFERENCE ON SCIENCE (ICOS), 2018, 979
  • [2] Bifurcation and stability analysis for a delayed Leslie-Gower predator-prey system
    Yuan, Sanling
    Song, Yongli
    IMA JOURNAL OF APPLIED MATHEMATICS, 2009, 74 (04) : 574 - 603
  • [3] Global Stability in The Delayed Leslie-Gower Predator-Prey System
    Wang, Wenlong
    Mang, Shufang
    Zhang, Chunrui
    PROCEEDINGS OF THE 7TH CONFERENCE ON BIOLOGICAL DYNAMIC SYSTEM AND STABILITY OF DIFFERENTIAL EQUATION, VOLS I AND II, 2010, : 299 - 307
  • [4] Dynamic Behaviors of a Harvesting Leslie-Gower Predator-Prey Model
    Zhang, Na
    Chen, Fengde
    Su, Qianqian
    Wu, Ting
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2011, 2011
  • [5] Optimal Harvesting on a Modified Leslie-Gower Predator-Prey Model Under Fear and Allee Effects on Prey
    Halder, Susmita
    Bhattacharyya, Joydeb
    Pal, Samares
    DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2022, 32 (4) : 1067 - 1096
  • [6] Population dynamics in a Leslie-Gower predator-prey model with predator harvesting at high densities
    Garcia, Christian Cortes
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, : 804 - 838
  • [7] Qualitative Analysis of a Leslie-Gower Predator-Prey Model with Delay
    Duque, Cosme
    Sivoli, Zoraida
    BULLETIN OF COMPUTATIONAL APPLIED MATHEMATICS, 2022, 10 (01): : 125 - 143
  • [8] Dynamic analysis of a Leslie-Gower predator-prey model with the fear effect and nonlinear harvesting
    Wu, Hongqiuxue
    Li, Zhong
    He, Mengxin
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (10) : 18592 - 18629
  • [9] Bogdanov-Takens bifurcation in a Leslie-Gower predator-prey model with prey harvesting
    Yi-jun Gong
    Ji-cai Huang
    Acta Mathematicae Applicatae Sinica, English Series, 2014, 30 : 239 - 244
  • [10] Bogdanov-Takens Bifurcation in a Leslie-Gower Predator-prey Model with Prey Harvesting
    Gong, Yi-jun
    Huang, Ji-cai
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2014, 30 (01): : 239 - 244