Dynamical constraints on phase transitions

被引:10
|
作者
Morawetz, K
机构
[1] Inst Sci Mat & Rayonnement, LPC, F-14050 Caen, France
[2] GANIL, F-14076 Caen 5, France
来源
PHYSICAL REVIEW C | 2000年 / 62卷 / 04期
关键词
D O I
10.1103/PhysRevC.62.044606
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The numerical solutions of nonlocal and local Boltzmann kinetic equations for the simulation of central heavy ion reactions are parametrized in terms of time-dependent thermodynamical variables in the Fermi liquid sense. This allows one to discuss dynamical trajectories in phase space. The nonequilibrium state is characterized by nonisobaric, nonisochoric, etc., conditions, shortly called isonothing conditions. Therefore a combination of thermodynamical observables is constructed which allows one to locate instabilities and points of possible phase transition in a dynamical sense. We find two different mechanisms of instability, a short time surface-dominated instability and later a spinodal-dominated volume instability. The latter one occurs only if the incident energies do not exceed significantly the Fermi energy and might be attributed to spinodal decomposition. In contrast the fast surface explosion occurs far outside the spinodal region and pertains also in the cases where the system develops too fast to suffer a spinodal decomposition and where the system approaches equilibrium outside the spinodal region.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Dynamical Phase Transitions on Nanoscale
    Kocsis, Gyoergy Albert
    Markus, Ferenc
    [J]. 2016 22ND INTERNATIONAL WORKSHOP ON THERMAL INVESTIGATIONS OF ICS AND SYSTEMS (THERMINIC), 2016, : 283 - 286
  • [2] Dynamical quantum phase transitions
    Zvyagin, A. A.
    [J]. LOW TEMPERATURE PHYSICS, 2016, 42 (11) : 971 - 994
  • [3] Dynamical Quantum Phase Transitions
    Schuetzhold, Ralf
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 2008, 153 (5-6) : 228 - 243
  • [4] Dynamical Quantum Phase Transitions
    Ralf Schützhold
    [J]. Journal of Low Temperature Physics, 2008, 153 : 228 - 243
  • [5] Disentangling dynamical phase transitions from equilibrium phase transitions
    Vajna, Szabolcs
    Dora, Balazs
    [J]. PHYSICAL REVIEW B, 2014, 89 (16):
  • [6] Dynamical theory of phase transitions and cosmological EW and QCD phase transitions
    Kim, Sang Pyo
    [J]. MODERN PHYSICS LETTERS A, 2008, 23 (17-20) : 1325 - 1335
  • [7] Dynamical phase transitions in a random environment
    Webman, I
    Ben-Avraham, D
    Cohen, A
    Havlin, S
    [J]. PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1998, 77 (05): : 1401 - 1412
  • [8] Computation of dynamical phase transitions in solids
    Merkle, C.
    Rohde, C.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2006, 56 (10-11) : 1450 - 1463
  • [9] Phase Transitions in Dynamical Random Graphs
    Tatyana S. Turova
    [J]. Journal of Statistical Physics, 2006, 123
  • [10] Resonance Trapping and Dynamical Phase Transitions
    Ingrid Rotter
    [J]. International Journal of Theoretical Physics, 2011, 50 : 1066 - 1070