Characterization of joint spectral radius via trace

被引:22
|
作者
Chen, QD
Zhou, XL [1 ]
机构
[1] Univ Duisburg, Dept Math, D-47057 Duisburg, Germany
[2] Zhejiang Univ, Dept Math, Hangzhou 310028, Peoples R China
关键词
joint spectral radius; finiteness conjecture; trace; two-scale dilation equation; wavelet;
D O I
10.1016/S0024-3795(00)00149-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The joint spectral radius for a bounded collection of the square matrices with complex entries and of the same size is characterized by the trace of matrices. This characterization allows us to give some estimates concerning the computation of the joint spectral radius. (C) 2000 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:175 / 188
页数:14
相关论文
共 50 条
  • [1] ON THE TRACE CHARACTERIZATION OF THE JOINT SPECTRAL RADIUS
    Xu, Jianhong
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2010, 20 : 367 - 375
  • [2] REALIZATION OF JOINT SPECTRAL RADIUS VIA ERGODIC THEORY
    Dai, Xiongping
    Huang, Yu
    Xiao, Mingqing
    ELECTRONIC RESEARCH ANNOUNCEMENTS IN MATHEMATICAL SCIENCES, 2011, 18 : 22 - 30
  • [3] Approximation of the Constrained Joint Spectral Radius via Algebraic Lifting
    Xu, Xiangru
    Ackmese, Behcet
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (07) : 3386 - 3392
  • [4] COMPLETE CHARACTERIZATION OF ODD FACTORS VIA THE SIZE, SPECTRAL RADIUS OR DISTANCE SPECTRAL RADIUS OF GRAPHS
    Li, Shuchao
    Miao, Shujing
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 59 (04) : 1045 - 1067
  • [5] Computing the joint spectral radius
    Gripenberg, G
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 234 : 43 - 60
  • [6] Estimation of the Joint Spectral Radius
    Czornik, Adam
    Jurgas, Piotr
    Niezabitowski, Michal
    MAN-MACHINE INTERACTIONS 4, ICMMI 2015, 2016, 391 : 401 - 410
  • [7] Estimates for the joint spectral radius
    Zhou, XL
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 172 (01) : 332 - 348
  • [8] Upper bounds for the Euclidean spectral radius of operators via joint norms
    Altwaijry, Najla
    Dragomir, Silvestru Sever
    Feki, Kais
    LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (05): : 875 - 890
  • [9] On the joint spectral radius of matrices of order 2 with equal spectral radius
    Bernhard Mößner
    Advances in Computational Mathematics, 2010, 33 : 243 - 254
  • [10] On the joint spectral radius of matrices of order 2 with equal spectral radius
    Moessner, Bernhard
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2010, 33 (02) : 243 - 254