A comparison of target detection algorithms using DSIAC ATR algorithm development data set

被引:8
|
作者
Mahalanobis, Abhijit [1 ]
McIntosh, Bruce [1 ]
机构
[1] Univ Cent Florida, 4000 Cent Florida Blvd, Orlando, FL 32816 USA
来源
关键词
ATR; deep learning; classification; convolutional neural network; localization;
D O I
10.1117/12.2517423
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we present preliminary results of infra-red target detection using the well-known Faster R-CNN network using a publicly available MWIR data set released by NVESD. We characterize the difficulty level of the images in terms of pixels on target (POT) and the local contrast. We then evaluate the performance of the network under challenging conditions and when the number of training images are varied.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Explorations in transfer learning and machine learning architectures utilizing the DSIAC ATR algorithm development data set
    Priddy, Kevin L.
    Dhara, Sastry
    AUTOMATIC TARGET RECOGNITION XXXIII, 2023, 12521
  • [2] Analyzing DSIAC ATR Algorithm Development Database Utilizing Transfer Learning
    Ozertem, Kemal Arda
    SPIE FUTURE SENSING TECHNOLOGIES 2024, 2024, 13083
  • [3] A comparison of algorithms for subsurface target detection and identification using time-domain electromagnetic induction data
    Tantum, SL
    Collins, LM
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (06): : 1299 - 1306
  • [4] Hybrid Detection Approaches using the Single Data Set Algorithm
    Aboutanios, Elias
    Rosenberg, Luke
    2020 IEEE RADAR CONFERENCE (RADARCONF20), 2020,
  • [5] Evaluation of the single and two data set STAP detection algorithms using measured data
    Aboutanios, Elias
    Mulgrew, Bernard
    IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 494 - +
  • [6] Comparison of Algorithms for Computing Data Set Reducts
    Kanik, Tomasz
    2013 INTERNATIONAL CONFERENCE ON DIGITAL TECHNOLOGIES (DT), 2013, : 99 - 103
  • [7] Target detection using supervised machine learning algorithms for GPR data
    N. Smitha
    Vipula Singh
    Sensing and Imaging, 2020, 21
  • [8] Target detection using supervised machine learning algorithms for GPR data
    Smitha, N.
    Singh, Vipula
    SENSING AND IMAGING, 2020, 21 (01):
  • [9] Nonlinear adaptive target detection algorithms using nonstationary image data
    Abu-Tahnat, MY
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON COMPUTER APPLICATIONS IN INDUSTRY AND ENGINEERING, 1996, : 52 - 55
  • [10] PROCESSING A NEW HYPERSPECTRAL DATA SET FOR TARGET DETECTION AND ATMOSPHERIC COMPENSATION ALGORITHM ASSESSMENT: THE RIT2017 DATA SET
    Ientilucci, Emmett J.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 4249 - 4252