Pontryagin's maximum principle for optimal control of the stationary Navier-Stokes equations

被引:12
|
作者
Wang, GS [1 ]
机构
[1] Huazhong Normal Univ, Dept Math, Wuhan 430079, Peoples R China
关键词
optimal control; stationary Navier-Stokes equations; maximum principle; state constraint;
D O I
10.1016/S0362-546X(02)00161-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with Pontryagin's maximum principle of the optimal control governed by stationary Navier-Stokes equation. Some kind of state constraint is involved. (C) 2003 Published by Elsevier Science Ltd.
引用
收藏
页码:1853 / 1866
页数:14
相关论文
共 50 条
  • [1] PONTRYAGIN MAXIMUM PRINCIPLE FOR THE OPTIMAL CONTROL OF LINEARIZED COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH STATE CONSTRAINTS
    Doboszczak, Stefan
    Mohan, Manil T.
    Sritharan, Sivaguru S.
    [J]. EVOLUTION EQUATIONS AND CONTROL THEORY, 2022, 11 (02): : 347 - 371
  • [2] Pontryagin's Principle for Optimal Control Problem Governed by 3D Navier-Stokes Equations
    Kien, B. T.
    Roesch, A.
    Wachsmuth, D.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 173 (01) : 30 - 55
  • [3] The maximum principle for the Navier-Stokes equations
    Akysh, Abdigali Sh.
    [J]. INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2016), 2016, 1759
  • [4] The Navier-Stokes equations and the maximum principle
    Mucha, PB
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2004, 2004 (67) : 3585 - 3605
  • [5] The maximum principle of the Navier-Stokes equations
    Sh, Akysh A.
    [J]. BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2012, 66 (02): : 4 - 16
  • [7] The simplest maximum principle for Navier-Stokes equations
    Akysh, A. Sh.
    [J]. BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2016, 83 (03): : 8 - 12
  • [8] Pontryagin’s Principle for Optimal Control Problem Governed by 3D Navier–Stokes Equations
    B. T. Kien
    A. Rösch
    D. Wachsmuth
    [J]. Journal of Optimization Theory and Applications, 2017, 173 : 30 - 55
  • [9] Optimal control in Navier-Stokes equations
    Maruoka, A
    Marin, M
    Kawahara, M
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 1998, 9 (3-4) : 313 - 322
  • [10] Optimal control for Navier-Stokes equations
    Cutland, Nigel J.
    Grzesiak, Katarzyna
    [J]. STRENGTH OF NONSTANDARD ANALYSIS, 2007, : 317 - +