Two-scale mathematical model for tsunami wave

被引:0
|
作者
Anjum, Naveed [1 ,2 ,3 ]
Ain, Qura Tul [1 ,2 ]
Li, Xiao-Xia [2 ]
机构
[1] Soochow Univ, Sch Math Sci, Suzhou, Peoples R China
[2] Soochow Univ, Coll Text & Engn, Natl Engn Lab Modern Silk, Suzhou, Peoples R China
[3] Govt Coll Univ, Dept Math, Faisalabad, Pakistan
关键词
Tsunami wave; Fractal dimension; Two-scale dimension; Porous surface; Variational theory; VARIATIONAL ITERATION METHOD; FRACTAL CALCULUS; EXPLANATION; TRANSFORM;
D O I
10.1007/s13137-021-00177-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Scale or dimension is critical for all physical laws, and different scales might result in distinct and sometimes contradicting laws for the same phenomenon. In this study, the idea of the two-scale fractal is utilized to model the time-fractional tsunami wave traveling on an unsmooth surface. Mass and momentum conservation equations are established in a fractal space. To covert the considered fractional model into a differential equation, the fractional complex transform is used, then He's variational iteration method is adopted to solve the resultant equation. The fractal model helps in studying the dynamic behavior of tsunami wave and their prevention through boundary control. The present study sheds new light on two-scale fluid mechanics.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Two-scale mathematical model for tsunami wave
    Anjum, Naveed
    Ain, Qura Tul
    Li, Xiao-Xia
    [J]. GEM - International Journal on Geomathematics, 2021, 12 (01):
  • [2] Two-scale mathematical model for tsunami wave
    Naveed Anjum
    Qura Tul Ain
    Xiao-Xia Li
    [J]. GEM - International Journal on Geomathematics, 2021, 12
  • [3] A two-scale mathematical model for DNA transcription
    Chiu, Chichia
    Fakhouri, Walid
    Liu, Nianzheng
    Dayringer, Evan
    Dresch, Jacqueline
    Arnosti, David
    [J]. MATHEMATICAL BIOSCIENCES, 2012, 236 (02) : 132 - 140
  • [4] Two-scale model of the wave equation with oscillating coeffecients
    Lenczner, M
    Kader, M
    Perrier, P
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE ASTRONOMIE, 2000, 328 (04): : 335 - 340
  • [5] A two-scale model for the periodic homogenization of the wave equation
    Brassart, Matthieu
    Lenczner, Michel
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2010, 93 (05): : 474 - 517
  • [6] A two-scale approximation for wave-wave interactions in an operational wave model
    Perrie, Will
    Toulany, Bechara
    Resio, Donald T.
    Roland, Aron
    Auclair, Jean-Pierre
    [J]. OCEAN MODELLING, 2013, 70 : 38 - 51
  • [7] A two-scale model for the wave equation with oscillating coefficients and data
    Brassart, Matthieu
    Lenczner, Michel
    [J]. COMPTES RENDUS MATHEMATIQUE, 2009, 347 (23-24) : 1439 - 1442
  • [8] A Two-Scale Poromechanical Model
    Frey, J.
    Chambon, R.
    Dascalu, C.
    [J]. PORO-MECHANICS IV, 2009, : 461 - 466
  • [9] A two-scale model of granular materials
    Wellmann, Christian
    Wriggers, Peter
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 205 : 46 - 58
  • [10] A Two-Scale Model of Granular Materials
    Wellmann, C.
    Wriggers, P.
    [J]. BAUINGENIEUR, 2011, 86 : 169 - 174