Distributed radiomics as a signature validation study using the Personal Health Train infrastructure

被引:41
|
作者
Shi, Zhenwei [1 ]
Zhovannik, Ivan [1 ,2 ]
Traverso, Alberto [1 ,6 ]
Dankers, Frank J. W. M. [1 ,2 ]
Deist, Timo M. [1 ,3 ]
Kalendralis, Petros [1 ]
Monshouwer, Rene [2 ]
Bussink, Johan [2 ]
Fijten, Rianne [1 ]
Aerts, Hugo J. W. L. [4 ,5 ]
Dekker, Andre [1 ]
Wee, Leonard [1 ]
机构
[1] Maastricht Univ, Dept Radiat Oncol MAASTRO, Med Ctr, GROW Sch Oncol & Dev Biol, Maastricht, Netherlands
[2] Radboud Univ Nijmegen, Dept Radiat Oncol, Med Ctr, Nijmegen, Netherlands
[3] Maastricht Univ, Med Ctr, GROW School Oncol & Dev Biol, D Lab Decis Support Precis Med, Maastricht, Netherlands
[4] Harvard Med Sch, Brigham & Womens Hosp, Dana Farber Canc Inst, Dept Radiat Oncol & Radiol, Boston, MA 02115 USA
[5] Maastricht Univ, Med Ctr, Radiol & Nucl Med, Maastricht, Netherlands
[6] Princess Margaret Canc Ctr, Radiat Med Program, Toronto, ON, Canada
关键词
LEVEL DATA; MODEL; INFORMATION; FEATURES; IMAGES; PET; WEB;
D O I
10.1038/s41597-019-0241-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Prediction modelling with radiomics is a rapidly developing research topic that requires access to vast amounts of imaging data. Methods that work on decentralized data are urgently needed, because of concerns about patient privacy. Previously published computed tomography medical image sets with gross tumour volume (GTV) outlines for non-small cell lung cancer have been updated with extended follow-up. In a previous study, these were referred to as Lung1 (n = 421) and Lung2 (n = 221). The Lung1 dataset is made publicly accessible via The Cancer Imaging Archive (TCIA; https://www.cancerimagingarchive.net). We performed a decentralized multi-centre study to develop a radiomic signature (hereafter "ZS2019") in one institution and validated the performance in an independent institution, without the need for data exchange and compared this to an analysis where all data was centralized. The performance of ZS2019 for 2-year overall survival validated in distributed radiomics was not statistically different from the centralized validation (AUC 0.61 vs 0.61; p = 0.52). Although slightly different in terms of data and methods, no statistically significant difference in performance was observed between the new signature and previous work (c-index 0.58 vs 0.65; p = 0.37). Our objective was not the development of a new signature with the best performance, but to suggest an approach for distributed radiomics. Therefore, we used a similar method as an earlier study. We foresee that the Lung1 dataset can be further re-used for testing radiomic models and investigating feature reproducibility.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Distributed radiomics as a signature validation study using the Personal Health Train infrastructure
    Zhenwei Shi
    Ivan Zhovannik
    Alberto Traverso
    Frank J. W. M. Dankers
    Timo M. Deist
    Petros Kalendralis
    René Monshouwer
    Johan Bussink
    Rianne Fijten
    Hugo J. W. L. Aerts
    Andre Dekker
    Leonard Wee
    [J]. Scientific Data, 6
  • [2] Distributed Analytics on Sensitive Medical Data: The Personal Health Train
    Beyan, Oya
    Choudhury, Ananya
    van Soest, Johan
    Kohlbacher, Oliver
    Zimmermann, Lukas
    Stenzhorn, Holger
    Karim, Md Rezaul
    Dumontier, Michel
    Decker, Stefan
    Santos, Luiz Olavo Bonino da Silva
    Dekker, Andre
    [J]. DATA INTELLIGENCE, 2020, 2 (1-2) : 96 - 107
  • [3] Distributed Analytics on Sensitive Medical Data: The Personal Health Train
    Oya Beyan
    Ananya Choudhury
    Johan van Soest
    Oliver Kohlbacher
    Lukas Zimmermann
    Holger Stenzhorn
    MdRezaul Karim
    Michel Dumontier
    Stefan Decker
    Luiz Olavo Bonino da Silva Santos
    Andre Dekker
    [J]. Data Intelligence., 2020, 2(Z1) (Z1) - 107+305
  • [4] Distributed learning on 20 000+lung cancer patients - The Personal Health Train
    Deist, Timo M.
    Dankers, Frank J. W. M.
    Ojha, Priyanka
    Marshall, M. Scott
    Janssen, Tomas
    Faivre-Finn, Corinne
    Masciocchi, Carlotta
    Valentini, Vincenzo
    Wang, Jiazhou
    Chen, Jiayan
    Zhang, Zhen
    Spezi, Emiliano
    Button, Mick
    Nuyttens, Joost Jan
    Vernhout, Rene
    van Soest, Johan
    Jochems, Arthur
    Monshouwer, Rene
    Bussink, Johan
    Price, Gareth
    Lambin, Philippe
    Dekker, Andre
    [J]. RADIOTHERAPY AND ONCOLOGY, 2020, 144 : 189 - 200
  • [5] A validation study of the Personal Health Scale in Argentina and Venezuela
    Jatuff, D.
    Montenegro, R.
    Mezzich, J. E.
    Gonzalez-Mora, J.
    Zapata-Vega, M. I.
    [J]. ACTAS ESPANOLAS DE PSIQUIATRIA, 2010, 38 (04): : 189 - 195
  • [6] Colorectal cancer health and care quality indicators in a federated setting using the Personal Health Train
    Choudhury, Ananya
    Janssen, Esther
    Bongers, Bart C.
    van Meeteren, Nico L. U.
    Dekker, Andre
    van Soest, Johan
    [J]. BMC MEDICAL INFORMATICS AND DECISION MAKING, 2024, 24 (01)
  • [7] Evaluation of the Privacy Risks of Personal Health Identifiers and Quasi-Identifiers in a Distributed Research Network: Development and Validation Study
    Oh, SeHee
    Sung, MinDong
    Rhee, Yumie
    Hong, Namki
    Park, Yu Rang
    [J]. JMIR MEDICAL INFORMATICS, 2021, 9 (05)
  • [8] Design and Implementation of Certificate Validation Mechanism using Reduction Signature in Distributed Domain Environment
    Kim, Hyun-Chul
    Lee, Young-Gu
    Jun, Moon-Seog
    [J]. THIRD 2008 INTERNATIONAL CONFERENCE ON CONVERGENCE AND HYBRID INFORMATION TECHNOLOGY, VOL 2, PROCEEDINGS, 2008, : 591 - 595
  • [9] A study on interoperability between two Personal Health Train infrastructures in leukodystrophy data analysis
    Welten, Sascha
    Herr, Marius de Arruda Botelho
    Hempel, Lars
    Hieber, David
    Placzek, Peter
    Graf, Michael
    Weber, Sven
    Neumann, Laurenz
    Jugl, Maximilian
    Tirpitz, Liam
    Kindermann, Karl
    Geisler, Sandra
    Santos, Luiz Olavo Bonino da Silva
    Decker, Stefan
    Pfeifer, Nico
    Kohlbacher, Oliver
    Kirsten, Toralf
    [J]. SCIENTIFIC DATA, 2024, 11 (01)
  • [10] Improving personal health outcomes through the Asthma Navigator™:: A validation study
    Hicks, RE
    Harris, G
    [J]. AUSTRALIAN JOURNAL OF PSYCHOLOGY, 2003, 55 : 103 - 103