Convergence and Normal Continuity Analysis of Nonstationary Subdivision Schemes Near Extraordinary Vertices and Faces

被引:8
|
作者
Conti, Costanza [1 ]
Donatelli, Marco [2 ]
Romani, Lucia [3 ]
Novara, Paola [2 ]
机构
[1] Univ Firenze, Dipartimento Ingn Ind, Viale Morgagni 40-44, I-50134 Florence, Italy
[2] Univ Insubria, Dipartimento Sci & Alta Tecnol, Via Valleggio 11, I-22100 Como, Italy
[3] Alma Mater Studiorum Univ Bologna, Dipartimento Matemat, Piazza Porta San Donato, I-40126 Bologna, Italy
关键词
Nonstationary subdivision; Extraordinary vertex; face; Convergence; Normal continuity; B-SPLINE SURFACES; EXPONENTIAL POLYNOMIALS; APPROXIMATION; CONSTRUCTION; REPRODUCTION; ORDER;
D O I
10.1007/s00365-019-09477-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Convergence and normal continuity analysis of a bivariate nonstationary (level-dependent) subdivision scheme for 2-manifold meshes with arbitrary topology is still an open issue. Exploiting ideas from the theory of asymptotically equivalent subdivision schemes, in this paper we derive new sufficient conditions for establishing convergence and normal continuity of any rotationally symmetric, nonstationary subdivision scheme near an extraordinary vertex/face.
引用
收藏
页码:457 / 496
页数:40
相关论文
共 18 条