REMARKS ON DOLBEAULT COHOMOLOGY OF OELJEKLAUS-TOMA MANIFOLDS AND HODGE THEORY

被引:3
|
作者
Kasuya, Hisashi [1 ]
机构
[1] Osaka Univ, Grad Sch Sci, Dept Math, Osaka, Japan
关键词
Oeljeklaus-Toma manifolds; solvmanifolds; Hodge theory on non-Kahler manifolds; BOTT-CHERN COHOMOLOGY; SOLVMANIFOLDS; RHAM; FORMALITY;
D O I
10.1090/proc/15436
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give explicit harmonic representatives of Dolbeault cohomology of Oeljeklaus-Toma manifolds and show that they are geometrically Dolbeault formal. We also give explicit harmonic representatives of Bott-Chern cohomology of Oeljeklaus-Toma manifolds of type (s, 1) and study the AngellaTomassini inequality.
引用
收藏
页码:3129 / 3137
页数:9
相关论文
共 50 条
  • [1] Cohomology of holomorphic line bundles and Hodge symmetry on Oeljeklaus-Toma manifolds
    Kasuya, Hisashi
    [J]. EUROPEAN JOURNAL OF MATHEMATICS, 2023, 9 (03)
  • [2] Hodge decomposition for Cousin groups and for Oeljeklaus-Toma manifolds
    Otiman, Alexandra
    Toma, Matei
    [J]. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2021, 22 (02) : 485 - 503
  • [3] DE RHAM AND TWISTED COHOMOLOGY OF OELJEKLAUS-TOMA MANIFOLDS
    Istrati, Nicolina
    Otiman, Alexandra
    [J]. ANNALES DE L INSTITUT FOURIER, 2019, 69 (05) : 2037 - 2066
  • [4] RIGIDITY OF OELJEKLAUS-TOMA MANIFOLDS
    Angella, Daniele
    Parton, Maurizio
    Vuletescu, Victor
    [J]. ANNALES DE L INSTITUT FOURIER, 2020, 70 (06) : 2409 - 2423
  • [5] Curves on the Oeljeklaus-Toma manifolds
    Verbitskaya, S. M.
    [J]. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2014, 48 (03) : 223 - 226
  • [6] Curves on the Oeljeklaus-Toma manifolds
    S. M. Verbitskaya
    [J]. Functional Analysis and Its Applications, 2014, 48 : 223 - 226
  • [7] Oeljeklaus-Toma manifolds and arithmetic invariants
    Braunling, O.
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2017, 286 (1-2) : 291 - 323
  • [8] On the pluriclosed flow on Oeljeklaus-Toma manifolds
    Fusi, Elia
    Vezzoni, Luigi
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2024, 76 (01): : 39 - 65
  • [9] Cohomology of holomorphic line bundles and Hodge symmetry on Oeljeklaus–Toma manifolds
    Hisashi Kasuya
    [J]. European Journal of Mathematics, 2023, 9
  • [10] ON METRIC AND COHOMOLOGICAL PROPERTIES OF OELJEKLAUS-TOMA MANIFOLDS
    Angella, Daniele
    Dubickas, Arturas
    Otiman, Alexandra
    Stelzig, Jonas
    [J]. PUBLICACIONS MATEMATIQUES, 2024, 68 (01) : 219 - 239