Floquet Engineering of Correlated Tunneling in the Bose-Hubbard Model with Ultracold Atoms

被引:145
|
作者
Meinert, F. [1 ,2 ]
Mark, M. J. [1 ,2 ,3 ]
Lauber, K. [1 ,2 ]
Daley, A. J. [4 ,5 ]
Naegerl, H. -C. [1 ,2 ]
机构
[1] Univ Innsbruck, Inst Expt Phys, A-6020 Innsbruck, Austria
[2] Univ Innsbruck, Pedro Elizalde Childrens Hosp, A-6020 Innsbruck, Austria
[3] Austrian Acad Sci, Inst Quantenopt & Quanteninformat, A-6020 Innsbruck, Austria
[4] Univ Strathclyde, Dept Phys, Glasgow G4 0NG, Lanark, Scotland
[5] Univ Strathclyde, SUPA, Glasgow G4 0NG, Lanark, Scotland
基金
欧洲研究理事会;
关键词
OPTICAL LATTICES; MOTT INSULATOR; QUANTUM; SYSTEMS; CESIUM; DYNAMICS; FERMIONS; GAS;
D O I
10.1103/PhysRevLett.116.205301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report on the experimental implementation of tunable occupation-dependent tunneling in a Bose-Hubbard system of ultracold atoms via time-periodic modulation of the on-site interaction energy. The tunneling rate is inferred from a time-resolved measurement of the lattice site occupation after a quantum quench. We demonstrate coherent control of the tunneling dynamics in the correlated many-body system, including full suppression of tunneling as predicted within the framework of Floquet theory. We find that the tunneling rate explicitly depends on the atom number difference in neighboring lattice sites. Our results may open up ways to realize artificial gauge fields that feature density dependence with ultracold atoms.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Extended Bose-Hubbard models with ultracold magnetic atoms
    Baier, S.
    Mark, M. J.
    Petter, D.
    Aikawa, K.
    Chomaz, L.
    Cai, Z.
    Baranov, M.
    Zoller, P.
    Ferlaino, F.
    [J]. SCIENCE, 2016, 352 (6282) : 201 - 205
  • [2] Statistical Floquet prethermalization of the Bose-Hubbard model
    Dalla Torre, Emanuele G.
    Dentelski, David
    [J]. SCIPOST PHYSICS, 2021, 11 (02):
  • [3] Floquet Prethermalization in a Bose-Hubbard System
    Rubio-Abadal, Antonio
    Ippoliti, Matteo
    Hollerith, Simon
    Wei, David
    Rui, Jun
    Sondhi, S. L.
    Khemani, Vedika
    Gross, Christian
    Bloch, Immanuel
    [J]. PHYSICAL REVIEW X, 2020, 10 (02)
  • [4] Floquet analysis of the modulated two-mode Bose-Hubbard model
    Watanabe, Gentaro
    Makela, Harri
    [J]. PHYSICAL REVIEW A, 2012, 85 (05):
  • [5] Floquet-Bloch operator for the Bose-Hubbard model with static field
    Kolovsky, AR
    Buchleitner, A
    [J]. PHYSICAL REVIEW E, 2003, 68 (05): : 562131 - 562139
  • [6] Density-dependent tunneling in the extended Bose-Hubbard model
    Maik, Michal
    Hauke, Philipp
    Dutta, Omjyoti
    Lewenstein, Maciej
    Zakrzewski, Jakub
    [J]. NEW JOURNAL OF PHYSICS, 2013, 15
  • [7] Attractively bound pairs of atoms in the Bose-Hubbard model and antiferromagnetism
    Schmidt, Bernd
    Bortz, Michael
    Eggert, Sebastian
    Fleischhauer, Michael
    Petrosyan, David
    [J]. PHYSICAL REVIEW A, 2009, 79 (06):
  • [8] Thermalization in a Bose-Hubbard dimer with modulated tunneling
    Kidd, R. A.
    Safavi-Naini, A.
    Corney, J. F.
    [J]. PHYSICAL REVIEW A, 2020, 102 (02)
  • [9] The dissipative Bose-Hubbard model
    Kordas, G.
    Witthaut, D.
    Buonsante, P.
    Vezzani, A.
    Burioni, R.
    Karanikas, A. I.
    Wimberger, S.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2015, 224 (11): : 2127 - 2171
  • [10] Dipolar Bose-Hubbard model
    Lake, Ethan
    Hermele, Michael
    Senthil, T.
    [J]. PHYSICAL REVIEW B, 2022, 106 (06)