Quantification of TFF3 expression from a non-endoscopic device predicts clinically relevant Barrett's oesophagus by machine learning

被引:2
|
作者
Berman, Adam G. [1 ]
Tan, W. Keith [2 ,3 ]
O'Donovan, Maria [4 ,5 ]
Markowetz, Florian [1 ]
Fitzgerald, Rebecca C. [2 ,3 ]
机构
[1] Univ Cambridge, Canc Res UK Cambridge Inst, Cambridge, England
[2] Univ Cambridge, Early Canc Inst, Dept Oncol, Hutchison Bldg,Hills Rd, Cambridge, England
[3] Cambridge Univ NHS Fdn Trust Cambridge, Addenbrookes Hosp, Dept Gastroenterol, Cambridge, England
[4] Cambridge Univ NHS Fdn Trust, Addenbrookes Hosp, Dept Histopathol, Cambridge, England
[5] Cyted Ltd, Cambridge, England
来源
EBIOMEDICINE | 2022年 / 82卷
关键词
Barrett's oesophagus; Trefoil-factor; 3; Intestinal metaplasia; Cytosponge; Non-endoscopic devices; Machine learning; INTESTINAL METAPLASIA; MANAGEMENT; DIAGNOSIS;
D O I
10.1016/j.ebiom.2022.104160
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Intestinal metaplasia (IM) is pre-neoplastic with variable cancer risk. Cytosponge-TFF3 test can detect IM. We aimed to 1) assess whether quantitative TFF3 scores can distinguish clinically relevant Barrett's oesophagus (BO) (C >= 1 or M >= 3) from focal IM pathologies (C <1, M<3 or IM of gastro-oesophageal junction); 2) whether TFF3 counts can be automated to inform dinical practice. Methods Patients from the Barett's oEsophagus Screening Trial 2 (BEST2) case-control and BEST3 randomised trials were used. For aim 1, TFF3-positive glands were scored manually and correlated with clinical diagnosis. For aim 2, machine learning approach was used to obtain TFF3 count and logistic regression with cross-validation was trained on the BEST2 dataset (n = 529) and tested in the BEST3 dataset (n =158). Findings Patients with clinically relevant BO had higher mean TFF3 gland count compared to focal IM pathologies (mean difference 4.14; 95% confidence interval, CI 2.76-5.52, p < 0.001). The mean class-balanced validation accuracy was 0.84 (95% CI 0.77-0.90), and precision of 0.95 (95% CI 0.87-1.00) for detecting clinically relevant BO. Applying this model on BEST3 showed precision of 0.91 (95% CI 0.85-0.97) for focal IM pathologies with a class-balanced accuracy of 0.77 (95% CI 0.69-0.84). Using this model, 55% of patients (87/158) in BEST3 would fall below the threshold for clinically relevant BO and could avoid gastroscopy, while only missing 5.1% of patients (8/158). Interpretation Automated Cytosponge-TFF3 gland quantification may enable thresholds to be set to trigger confirmatory gastroscopy to minimize overdiagnosis of focal IM pathologies with very low cancer-associated risk. Copyright (C) 2022 The Authors. Published by Elsevier B.V.
引用
收藏
页数:10
相关论文
共 6 条
  • [1] UTILISATION OF THE CYTOSPONGE DEVICE AS A TOOL FOR NON-ENDOSCOPIC SURVEILLANCE IN PATIENTS WITH BARRETT'S OESOPHAGUS
    Sehgal, Vinay
    Alkandari, Ameenah
    McGuire, Joshua
    Aslam, Nasar
    Telese, Andrea
    Hussein, Mohamed
    Naidoo, Dashnee
    Coates, Olivia
    Thorpe, Sally
    Brogden, Sara E.
    Makahamadze, Christwishes
    Duku, Margaret
    Sesay, Michael
    Mitchison, Miriam
    Jansen, Marnix
    Sweis, Rami
    Banks, Matthew
    Graham, David
    Lovat, Laurence B.
    Haidry, Rehan
    [J]. GASTROENTEROLOGY, 2023, 164 (06) : S1016 - S1016
  • [2] Non-endoscopic screening biomarkers for Barrett's oesophagus: from microarray analysis to the clinic
    Lao-Sirieix, P.
    Boussioutas, A.
    Kadri, S. R.
    O'Donovan, M.
    Debiram, I.
    Das, M.
    Harihar, L.
    Fitzgerald, R. C.
    [J]. GUT, 2009, 58 (11) : 1451 - 1459
  • [3] A PILOT FEASIBILITY STUDY OF SCREENING FOR BARRETT'S OESOPHAGUS WITH A NOVEL NON-ENDOSCOPIC CAPSULE SPONGE DEVICE IN A PRIMARY CARE SETTING
    Kadri, S. R.
    Debiram, I.
    Lao-Sirieix, P.
    O'Donovan, M.
    Blazeby, J. M.
    Males, A.
    Morris, H.
    Walter, F.
    Emery, J.
    Fitzgerald, R. C.
    [J]. GUT, 2009, 58 : A145 - A146
  • [4] Assessment of Sponge-on-String Device Parameters for the Non-endoscopic Detection of Barrett's Esophagus: Results from a Randomized Trial
    Iyer, Prasad
    Johnson, Michele
    Lansing, Ramona
    Yab, Tracy C.
    Taylor, William R.
    Slettedahl, Seth W.
    Mahoney, Douglas W.
    Devens, Mary
    Simonson, Julie
    Berger, Calise K.
    Foote, Patrick H.
    Smyrk, Thomas
    Wang, Kenneth
    Katzka, David
    Ahlquist, David A.
    [J]. AMERICAN JOURNAL OF GASTROENTEROLOGY, 2016, 111 : S229 - S229
  • [5] Machine Learning Creates a Simple Endoscopic Classification System that Improves Dysplasia Detection in Barrett's Oesophagus amongst Non-expert Endoscopists
    Sehgal, Vinay
    Rosenfeld, Avi
    Graham, David G.
    Lipman, Gideon
    Bisschops, Raf
    Ragunath, Krish
    Rodriguez-Justo, Manuel
    Novelli, Marco
    Banks, Matthew R.
    Haidry, Rehan J.
    Lovat, Laurence B.
    [J]. GASTROENTEROLOGY RESEARCH AND PRACTICE, 2018, 2018
  • [6] Analytical Validation of a DNA Methylation Biomarker Test for the Diagnosis of Barrett's Esophagus and Esophageal Adenocarcinoma from Samples Collected Using EsoCheck®, a Non-Endoscopic Esophageal Cell Collection Device
    Ghosal, Abhisek
    Verma, Suman
    Le, Ivy T.
    Lee, Victoria T.
    deGuzman, Brian J.
    Aklog, Lishan
    [J]. DIAGNOSTICS, 2024, 14 (16)