CoMB-Deep: Composite Deep Learning-Based Pipeline for Classifying Childhood Medulloblastoma and Its Classes

被引:31
|
作者
Attallah, Omneya [1 ]
机构
[1] Arab Acad Sci Technol & Maritime Transport, Coll Engn & Technol, Dept Elect & Commun Engn, Alexandria, Egypt
关键词
childhood medulloblastoma; histopathology; computer-aided diagnosis; convolutional neural network; long short term memory; FEATURE-SELECTION; BRAIN-TUMORS; IMAGE CLASSIFICATION; CURRENT MANAGEMENT; FEATURE-EXTRACTION; FUTURE; EPIDEMIOLOGY; RECOGNITION; INSIGHTS; SYSTEM;
D O I
10.3389/fninf.2021.663592
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Childhood medulloblastoma (MB) is a threatening malignant tumor affecting children all over the globe. It is believed to be the foremost common pediatric brain tumor causing death. Early and accurate classification of childhood MB and its classes are of great importance to help doctors choose the suitable treatment and observation plan, avoid tumor progression, and lower death rates. The current gold standard for diagnosing MB is the histopathology of biopsy samples. However, manual analysis of such images is complicated, costly, time-consuming, and highly dependent on the expertise and skills of pathologists, which might cause inaccurate results. This study aims to introduce a reliable computer-assisted pipeline called CoMB-Deep to automatically classify MB and its classes with high accuracy from histopathological images. This key challenge of the study is the lack of childhood MB datasets, especially its four categories (defined by the WHO) and the inadequate related studies. All relevant works were based on either deep learning (DL) or textural analysis feature extractions. Also, such studies employed distinct features to accomplish the classification procedure. Besides, most of them only extracted spatial features. Nevertheless, CoMB-Deep blends the advantages of textural analysis feature extraction techniques and DL approaches. The CoMB-Deep consists of a composite of DL techniques. Initially, it extracts deep spatial features from 10 convolutional neural networks (CNNs). It then performs a feature fusion step using discrete wavelet transform (DWT), a texture analysis method capable of reducing the dimension of fused features. Next, the CoMB-Deep explores the best combination of fused features, enhancing the performance of the classification process using two search strategies. Afterward, it employs two feature selection techniques on the fused feature sets selected in the previous step. A bi-directional long-short term memory (Bi-LSTM) network; a DL-based approach that is utilized for the classification phase. CoMB-Deep maintains two classification categories: binary category for distinguishing between the abnormal and normal cases and multi-class category to identify the subclasses of MB. The results of the CoMB-Deep for both classification categories prove that it is reliable. The results also indicate that the feature sets selected using both search strategies have enhanced the performance of Bi-LSTM compared to individual spatial deep features. CoMB-Deep is compared to related studies to verify its competitiveness, and this comparison confirmed its robustness and outperformance. Hence, CoMB-Deep can help pathologists perform accurate diagnoses, reduce misdiagnosis risks that could occur with manual diagnosis, accelerate the classification procedure, and decrease diagnosis costs.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] A Deep Learning-based Stalk Grasping Pipeline
    Parhar, Tanvir
    Baweja, Harjatin
    Jenkins, Merritt
    Kantor, George
    2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2018, : 6161 - 6167
  • [2] DEEP LEARNING-BASED PERSONALIZED SURVIVAL PREDICTION FOR MEDULLOBLASTOMA
    Stefan, Sabina
    Northcott, Paul
    Hovestadt, Volker
    NEURO-ONCOLOGY, 2023, 25
  • [3] Deep Learning-based Method for Classifying and Localizing Potato Blemishes
    Marino, Sofia
    Beauseroy, Pierre
    Smolarz, Andre
    ICPRAM: PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS, 2019, : 107 - 117
  • [4] Deep Learning-Based Composite Fault Diagnosis
    An, Zining
    Wu, Fan
    Zhang, Cong
    Ma, Jinhao
    Sun, Bo
    Tang, Bihua
    Liu, Yuanan
    IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2023, 13 (02) : 572 - 581
  • [5] Deep Learning Framework for the Prediction of Childhood Medulloblastoma
    Muthalakshmi M.
    Inbamalar T.M.
    Chandravathi C.
    Saravanan K.
    Computer Systems Science and Engineering, 2023, 46 (01): : 735 - 747
  • [6] A Deep Learning-Based Pipeline for the Generation of Synthetic Tabular Data
    Panfilo, Daniele
    Boudewijn, Alexander
    Saccani, Sebastiano
    Coser, Andrea
    Svara, Borut
    Chauvenet, Carlo Rossi
    Mami, Ciro Antonio
    Medvet, Eric
    IEEE ACCESS, 2023, 11 : 63306 - 63323
  • [7] Automatic deep learning-based pipeline for Mediterranean fish segmentation
    Muntaner-Gonzalez, Caterina
    Nadal-Martinez, Antonio
    Martin-Abadal, Miguel
    Gonzalez-Cid, Yolanda
    FRONTIERS IN MARINE SCIENCE, 2025, 12
  • [8] A deep learning-based automated diagnostic system for classifying mammographic lesions
    Yamaguchi, Takeshi
    Inoue, Kenichi
    Tsunoda, Hiroko
    Uematsu, Takayoshi
    Shinohara, Norimitsu
    Mukai, Hirofumi
    MEDICINE, 2020, 99 (27) : E20977
  • [9] An automatic and accurate deep learning-based neuroimaging pipeline for the neonatal brain
    Shen, Dan Dan
    Bao, Shan Lei
    Wang, Yan
    Chen, Ying Chi
    Zhang, Yu Cheng
    Li, Xing Can
    Ding, Yu Chen
    Jia, Zhong Zheng
    PEDIATRIC RADIOLOGY, 2023, 53 (08) : 1685 - 1697
  • [10] An automatic and accurate deep learning-based neuroimaging pipeline for the neonatal brain
    Dan Dan Shen
    Shan Lei Bao
    Yan Wang
    Ying Chi Chen
    Yu Cheng Zhang
    Xing Can Li
    Yu Chen Ding
    Zhong Zheng Jia
    Pediatric Radiology, 2023, 53 : 1685 - 1697