Pattern based prediction for plasma etch

被引:26
|
作者
Abrokwah, Kwaku O. [1 ]
Chidambaram, P. R.
Boning, Duane S.
机构
[1] MIT, Microsyst Technol Labs, Cambridge, MA 02139 USA
[2] Texas Instruments Inc, Silicon Technol Dev, Dallas, TX 75243 USA
关键词
aspect ratio dependent etch (ARDE); die level variation; feature level variation; microloading; pattern density; pattern dependency; reactive ion etch (RIE);
D O I
10.1109/TSM.2007.896638
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Plasma etching is a key process for pattern formation in integrated circuit (IC) manufacturing. Unfortunately, pattern-dependent nonuniformities arise in plasma etching processes due to localized microloading and feature size or aspect ratio-dependent reactive ion etch lag. We propose a semi-empirical methodology for characterization and chip-scale modeling of pattern-dependent effects in plasma etching of ICs. We apply this methodology to the study of interconnect trench etching and show that an integrated model is able to predict both pattern density and feature size dependent nonuniformities in trench depth.
引用
收藏
页码:77 / 86
页数:10
相关论文
共 50 条
  • [1] Pattern based prediction for plasma etch
    Abrokwah, Kwaku O.
    Chidambaram, P. R.
    Boning, Duane S.
    [J]. 2006 IEEE/SEMI ADVANCED SEMICONDUCTOR MANUFACTURING CONFERENCE AND WORKSHOP, 2006, : 77 - +
  • [2] Introducing etch kernels for efficient pattern sampling and etch bias prediction
    Weisbuch, Francois
    Lutich, Andrey
    Schatz, Jirka
    [J]. JOURNAL OF MICRO-NANOLITHOGRAPHY MEMS AND MOEMS, 2018, 17 (01):
  • [3] Statistics Pattern Analysis based Virtual Metrology for Plasma Etch Processes
    He, Q. Peter
    Wang, Jin
    Gilicia, Hector E.
    Stuber, John D.
    Gill, Bhalinder S.
    [J]. 2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 4897 - 4902
  • [4] Plasma etch process control with a neural network-based prediction model
    Card, JP
    Sniderman, DL
    Klimasauskas, C
    [J]. PROCEEDINGS OF THE SECOND INTERNATIONAL SYMPOSIUM ON PROCESS CONTROL, DIAGNOSTICS, AND MODELING IN SEMICONDUCTOR MANUFACTURING, 1997, 97 (09): : 19 - 27
  • [5] Plasma etch prediction using genetic algorithm based polynomial neural network
    Kim, DW
    Kim, B
    Shim, IJ
    Park, GT
    [J]. SURFACE ENGINEERING, 2004, 20 (01) : 31 - 36
  • [6] Quantitative Analysis for Plasma Etch Modeling Using Optical Emission Spectroscopy: Prediction of Plasma Etch Responses
    Jeong, Young-Seon
    Hwang, Sangheum
    Ko, Young-Don
    [J]. INDUSTRIAL ENGINEERING AND MANAGEMENT SYSTEMS, 2015, 14 (04): : 392 - 400
  • [7] REVIEW OF PLASMA-BASED ETCH TREATMENT IN DIELECTRIC ETCH PROCESSES
    Han, Qiu-Hua
    Wang, Xin-Peng
    Zhou, Junqing
    Hu, Minda
    Zhang, Hai-Yang
    [J]. CHINA SEMICONDUCTOR TECHNOLOGY INTERNATIONAL CONFERENCE 2013 (CSTIC 2013), 2013, 52 (01): : 349 - 355
  • [8] Endpoint prediction for polysilicon plasma etch via optical emission interferometry
    Wong, K
    Boning, DS
    Sawin, HH
    Butler, SW
    Sachs, EM
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 1997, 15 (03): : 1403 - 1408
  • [9] Minimizing metal etch rate pattern sensitivity in a high density plasma etcher
    Gabriel, CT
    Zheng, J
    Abraham, SC
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 1997, 15 (03): : 697 - 701
  • [10] Microscale pattern etch of 4H-SiC by inductively coupled plasma
    Zhuang, Shiwei
    Tang, Jiale
    Gu, Zhiqiang
    Che, Dongchen
    Hu, Dongdong
    Chen, Lu
    Xu, Kaidong
    [J]. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2019, 30 (20) : 18788 - 18793