Neural Population Coding of Stimulus Features

被引:0
|
作者
Iclanzan, David [1 ]
Szilagyi, Laszlo [1 ]
机构
[1] Sapientia Hungarian Univ Transylvania, Targu Mures, Romania
关键词
Neural coding; Entropy distillation; Higher-order features;
D O I
10.1007/978-3-319-26561-2_32
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
While empirical evidence suggest that the brain can represent and operate on probability distributions, it is not clear how multivariate dependencies can be detected and represented by neural circuits. Based on previous work and the principle of entropy distillation, the paper introduces a massively parallel connectionist machine whose spiking behavior adapts to the statistical distribution of binary inputs. Experimental results confirm that the network is able to accurately capture the joint probability distribution of the inputs and it is able to represent even higher-order features lacking pairwise correlations.
引用
收藏
页码:263 / 270
页数:8
相关论文
共 50 条
  • [1] Neural population coding of sound level adapts to stimulus statistics
    Dean, I
    Harper, NS
    McAlpine, D
    [J]. NATURE NEUROSCIENCE, 2005, 8 (12) : 1684 - 1689
  • [2] Neural population coding of sound level adapts to stimulus statistics
    Isabel Dean
    Nicol S Harper
    David McAlpine
    [J]. Nature Neuroscience, 2005, 8 : 1684 - 1689
  • [3] Optimized Parallel Coding of Second-Order Stimulus Features by Heterogeneous Neural Populations
    Huang, Chengjie G.
    Chacron, Maurice J.
    [J]. JOURNAL OF NEUROSCIENCE, 2016, 36 (38): : 9859 - 9872
  • [4] The neural coding of stimulus intensity: Linking the population response of mechanoreceptive Afferents with psychophysical Behavior
    Muniak, Michael A.
    Ray, Supratim
    Hsiao, Steven S.
    Dammann, J. Frank
    Bensmaia, Sliman J.
    [J]. JOURNAL OF NEUROSCIENCE, 2007, 27 (43): : 11687 - 11699
  • [5] Neural Model of Coding Stimulus Orientation and Adaptation
    Vaitkevicius, Henrikas
    Svegzda, Algimantas
    Stanikunas, Rytis
    Bliumas, Remigijus
    Soliunas, Alvydas
    Kulikowski, Janus J.
    [J]. NEURAL COMPUTATION, 2020, 32 (04) : 711 - 740
  • [6] Coding stimulus amplitude by correlated neural activity
    Metzen, Michael G.
    Avila-Akerberg, Oscar
    Chacron, Maurice J.
    [J]. PHYSICAL REVIEW E, 2015, 91 (04):
  • [7] Coding Stimulus Information with Cooperative Neural Populations
    Aghagolzadeh, Mehdi
    Eldawlatly, Seif
    Oweiss, Karim
    [J]. 2009 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1- 4, 2009, : 1594 - 1598
  • [8] Stimulus reference frame and neural coding precision
    Kostal, Lubomir
    [J]. JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2016, 71 : 22 - 27
  • [9] Population coding of electrosensory stimulus in receptor network
    Fujita, Kazuhisa
    Kashimori, Yoshiki
    [J]. NEUROCOMPUTING, 2006, 69 (10-12) : 1206 - 1210
  • [10] Coding by neural population oscillations?
    Ventriglia, F
    [J]. BRAIN, VISION, AND ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2005, 3704 : 78 - 88