Ionic liquids for CO2 capture-Development and progress

被引:528
|
作者
Hasib-ur-Rahman, M. [1 ]
Siaj, M. [2 ]
Larachi, F. [1 ]
机构
[1] Univ Laval, Dept Chem Engn, Quebec City, PQ G1V 0A6, Canada
[2] Univ Quebec, Dept Chem, Montreal, PQ H3C 3P8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Ionic liquids; Flue gas; Carbon dioxide capture; Regeneration; Solubility; Toxicity; GAS SEPARATION MEMBRANES; PRESSURE PHASE-BEHAVIOR; CARBON-DIOXIDE; POLY(IONIC LIQUID)S; SOLUBILITY; IMIDAZOLIUM; DIFFUSIVITY; SEQUESTRATION; PERFORMANCE; ABSORPTION;
D O I
10.1016/j.cep.2010.03.008
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Innovative off-the-shelf CO2 capture approaches are burgeoning in the literature, among which, ionic liquids seem to have been omitted in the recent Intergovernmental Panel on Climate Change (IPCC) survey Ionic liquids (ILs), because of their tunable properties, wide liquid range, reasonable thermal stability, and negligible vapor pressure, are emerging as promising candidates rivaling with conventional amine scrubbing. Due to substantial solubility, room-temperature ionic liquids (RTILs) are quite useful for CO2 separation from flue gases Their absorption capacity can be greatly enhanced by functionalization with an amine moiety but with concurrent increase in viscosity making process handling difficult However this downside can be overcome by making use of supported ionic-liquid membranes (SILMs), especially where high pressures and temperatures are involved. Moreover, due to negligible loss of ionic liquids during recycling, these technologies will also decrease the CO2 capture cost to a reasonable extent when employed on industrial scale There is also need to look deeply into the noxious behavior of these unique species. Nevertheless, the flexibility in synthetic structure of ionic liquids may make them opportunistic in CO2 capture scenarios (C) 2010 Elsevier B V All rights reserved
引用
收藏
页码:313 / 322
页数:10
相关论文
共 50 条
  • [1] Progress and Development of Capture for CO2 by Ionic Liquids
    Zhang, L.
    Chen, J.
    Lv, J. X.
    Wang, S. F.
    Cui, Y.
    [J]. ASIAN JOURNAL OF CHEMISTRY, 2013, 25 (05) : 2355 - 2358
  • [2] Current status of CO2 capture with ionic liquids: Development and progress
    Elmobarak, Wamda Faisal
    Almomani, Fares
    Tawalbeh, Muhammad
    Al-Othman, Amani
    Martis, Remston
    Rasool, Kashif
    [J]. FUEL, 2023, 344
  • [3] The Research Progress of CO2 Capture with Ionic Liquids
    Zhao Zhijun
    Dong Haifeng
    Zhang Xiangping
    [J]. CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2012, 20 (01) : 120 - 129
  • [4] Capture of CO2 by Ionic Liquids
    Zhou Lingyun
    Fan Jing
    Wang Jianji
    [J]. PROGRESS IN CHEMISTRY, 2011, 23 (11) : 2269 - 2275
  • [5] Research Progress of CO2 Capture and Separation by Functionalized Ionic Liquids and Materials
    Zeng Shaojuan
    Sun Xueqi
    Bai Yinge
    Bai Lu
    Zheng Shuang
    Zhang Xianping
    Zhang Suojiang
    [J]. ACTA CHIMICA SINICA, 2023, 81 (06) : 627 - 645
  • [6] Polymeric ionic liquids for CO2 capture and separation: potential, progress and challenges
    Zulfiqar, Sonia
    Sarwar, Muhammad Ilyas
    Mecerreyes, David
    [J]. POLYMER CHEMISTRY, 2015, 6 (36) : 6435 - 6451
  • [7] Encapsulated ionic liquids for CO2 capture
    Wang, Hongmin
    Zhu, Jiamei
    Tan, Liang
    Zhou, Min
    Zhang, Shuangquan
    [J]. MATERIALS CHEMISTRY AND PHYSICS, 2020, 251
  • [8] Designing ionic liquids for CO2 capture
    Dixon, JaNeille K.
    Muldoon, Mark J.
    Aki, Sudhir N. V. K.
    Anderson, Jessica L.
    Brennecke, Joan F.
    Maginn, Edward J.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 231
  • [9] Ionic Liquids for CO2 Capture and Reduction
    Zakrzewska, Malgorzata E.
    [J]. C-JOURNAL OF CARBON RESEARCH, 2021, 7 (01):
  • [10] The potential of ionic liquids for CO2 capture
    Bandyopadhyay, Amitava
    [J]. GREENHOUSE GASES-SCIENCE AND TECHNOLOGY, 2014, 4 (06): : 685 - 686