Few products, many h-fold sums

被引:3
|
作者
Bush, Albert [1 ]
Croot, Ernie [1 ]
机构
[1] Georgia Inst Technol, Sch Math, 686 Cherry St, Atlanta, GA 30332 USA
关键词
Sum-product problem; additive combinatorics; sumset and product set; Plunnecke-Ruzsa inequality; dependent random choice; SET; INTEGERS; NUMBER;
D O I
10.1142/S1793042118501270
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Expanding upon a technique of Croot and Hart, we show that for every h, there exists an epsilon > 0 such that if A subset of R is sufficiently large and vertical bar A.A vertical bar <= vertical bar A vertical bar(1+epsilon), then vertical bar hA vertical bar >= vertical bar A vertical bar(Omega(e root log h)).
引用
收藏
页码:2107 / 2128
页数:22
相关论文
共 50 条
  • [1] h-FOLD SUMS FROM A SET WITH FEW PRODUCTS
    Croot, Ernie
    Hart, Derrick
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 24 (02) : 505 - 519
  • [2] Few sums, many products
    Elekes, GY
    Ruzsa, IZ
    [J]. STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2003, 40 (03) : 301 - 308
  • [3] On the few products, many sums problem
    Murphy, Brendan
    Rudnev, Misha
    Shkredov, Ilya D.
    Shteinikov, Yurii N.
    [J]. JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2019, 31 (03): : 573 - 602
  • [4] On the structure of the h-fold sumsets
    Zhou, Jun-Yu
    Yang, Quan-Hui
    [J]. COMPTES RENDUS MATHEMATIQUE, 2021, 359 (04) : 493 - 500
  • [5] On the cardinality of general h-fold sumsets
    Yang, Quan-Hui
    Chen, Yong-Gao
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2015, 47 : 103 - 114
  • [6] GENERALIZED H-FOLD SUMSET AND SUBSEQUENCE SUM
    Mohan
    Pandey, Ram Krishna
    [J]. arXiv, 1600,
  • [7] EXTENDED INVERSE THEOREMS FOR h-FOLD SUMSETS IN INTEGERS
    Mohan
    Pandey, Ram Krishna
    [J]. CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2023, 18 (02) : 129 - 145
  • [8] h-fold Symmetric quasicrystallography from affine Coxeter groups
    Koca, N. O.
    Koca, M.
    Al-Shidhani, S.
    [J]. XXII INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS-22), 2014, 563
  • [9] DIRECT SUMS AND PRODUCTS OF INFINITELY MANY COPIES OF INTEGERS
    DJOKOVIC, DZ
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1972, 79 (03): : 306 - &
  • [10] If so many are "few," how few are "many"?
    Heim, Stefan
    McMillan, Corey T.
    Clark, Robin
    Golob, Stephanie
    Min, Nam E.
    Olm, Christopher
    Powers, John
    Grossman, Murray
    [J]. FRONTIERS IN PSYCHOLOGY, 2015, 6