Small Time One-Sided LIL Behavior for Levy Processes at Zero

被引:5
|
作者
Savov, Mladen [1 ]
机构
[1] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
关键词
Levy process; LIL behavior; Norming functions; ITERATED LOGARITHM; UNIVERSAL LAW;
D O I
10.1007/s10959-008-0202-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We specify a function b(0)(t) in terms of the Levy triplet such that lim sup(t -> 0) X(t)/b(0)(t) is an element of [1, 1.8] a.s. integral(1)(0)(Pi) over bar (+) (b(0)(t)) dt < infinity for any Levy process X with unbounded variation and a Brownian component sigma = 0. We show with an example that there are cases where lim sup(t -> 0)X(t)/b(t) = 1 a.s. but b(t) is not asymptotically equivalent to b(0)(t) as t tends to 0. We achieve this by introducing an integral criterion which checks whether lim sup(t -> 0)X(t)/b(t) is 0, infinity, or a finite positive value for b(t) satisfying very mild conditions and any Levy process.
引用
收藏
页码:209 / 236
页数:28
相关论文
共 50 条