Cumulative Citation Recommendation: Classification vs. Ranking

被引:0
|
作者
Balog, Krisztian [1 ]
Ramampiaro, Heri [2 ]
机构
[1] Univ Stavanger, Stavanger, Norway
[2] NTNU Trondheim, Trondheim, Norway
关键词
Knowledge base acceleration; cumulative citation recommendation; information filtering;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cumulative citation recommendation refers to the task of filtering a time-ordered corpus for documents that are highly relevant to a pre-defined set of entities. This task has been introduced at the TREC Knowledge Base Acceleration track in 2012, where two main families of approaches emerged: classification and ranking. In this paper we perform an experimental comparison of these two strategies using supervised learning with a rich feature set. Our main finding is that ranking outperforms classification on all evaluation settings and metrics. Our analysis also reveals that a ranking-based approach has more potential for future improvements.
引用
收藏
页码:941 / 944
页数:4
相关论文
共 50 条
  • [1] A priori vs. a posteriori normalisation of citation indicators. The case of journal ranking
    Wolfgang Glänzel
    András Schubert
    Bart Thijs
    Koenraad Debackere
    Scientometrics, 2011, 87 : 415 - 424
  • [2] A priori vs. a posteriori normalisation of citation indicators. The case of journal ranking
    Glaenzel, Wolfgang
    Schubert, Andras
    Thijs, Bart
    Debackere, Koenraad
    SCIENTOMETRICS, 2011, 87 (02) : 415 - 424
  • [3] A Comparative Study: Classification Vs. Matrix Factorization for Therapeutics Recommendation
    Erdeniz, Seda Polat
    Schrempf, Michael
    Kramer, Diether
    Felfernig, Alexander
    FOUNDATIONS OF INTELLIGENT SYSTEMS (ISMIS 2022), 2022, 13515 : 467 - 476
  • [4] Entity Burst Discriminative Model for Cumulative Citation Recommendation
    Lerong Ma
    Journal of Beijing Institute of Technology, 2019, 28 (02) : 356 - 364
  • [5] Entity Burst Discriminative Model for Cumulative Citation Recommendation
    Ma L.
    Journal of Beijing Institute of Technology (English Edition), 2019, 28 (02): : 356 - 364
  • [6] A Hybrid Discriminative Mixture Model for Cumulative Citation Recommendation
    Ma, Lerong
    Song, Dandan
    Liao, Lejian
    Wang, Jingang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2020, 32 (04) : 617 - 630
  • [7] A joint deep model of entities and documents for cumulative citation recommendation
    Lerong Ma
    Dandan Song
    Lejian Liao
    Yao Ni
    Cluster Computing, 2019, 22 : 5435 - 5446
  • [8] A joint deep model of entities and documents for cumulative citation recommendation
    Ma, Lerong
    Song, Dandan
    Liao, Lejian
    Ni, Yao
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (Suppl 3): : S5435 - S5446
  • [9] Drug Recommendation from Diagnosis Codes: Classification vs. Collaborative Filtering Approaches
    Sae-Ang, Apichat
    Chairat, Sawrawit
    Tansuebchueasai, Natchada
    Fumaneeshoat, Orapan
    Ingviya, Thammasin
    Chaichulee, Sitthichok
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2023, 20 (01)
  • [10] Query-Focused Personalized Citation Recommendation With Mutually Reinforced Ranking
    Mu, Dejun
    Guo, Lantian
    Cai, Xiaoyan
    Hao, Fei
    IEEE ACCESS, 2018, 6 : 3107 - 3119