Hardware-driven adaptive k-means clustering for real-time video imaging

被引:20
|
作者
Maliatski, B [1 ]
Yadid-Pecht, O [1 ]
机构
[1] Ben Gurion Univ Negev, VLSI Syst Ctr, IL-84105 Beer Sheva, Israel
关键词
clustering; image processing; VLSI;
D O I
10.1109/TCSVT.2004.839977
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new adaptive k-means clustering algorithm for real-time video imaging is presented. In the proposed solution, a weighted contribution of both pixel intensity and distance between the pixels is used for cluster identification. The weight adaptation of each parameter reduces the computation complexity and makes it possible to implement the algorithm in hardware. The algorithm is designed for real-time video imaging in a VLSI implementation. It was implemented with 15 kgates and maximum clock rate of 80 MHz. Simulation results prove that a QCIF image could be handled in 15 Vs.
引用
收藏
页码:164 / 166
页数:3
相关论文
共 50 条
  • [1] Real-time K-means clustering for color images on reconfigurable hardware
    Maruyama, Tsutomu
    [J]. 18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2006, : 816 - 819
  • [2] Bandwidth Adaptive Hardware Architecture of K-Means Clustering for Video Analysis
    Chen, Tse-Wei
    Chien, Shao-Yi
    [J]. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2010, 18 (06) : 957 - 966
  • [3] BANDWIDTH ADAPTIVE HARDWARE ARCHITECTURE OF K-MEANS CLUSTERING FOR INTELLIGENT VIDEO PROCESSING
    Chen, Tse-Wei
    Chien, Shao-Yi
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 573 - +
  • [4] MongoDB Clustering using K-means for Real-Time Song Recognition
    Bin Sahbudin, Murtadha Arif
    Scarpa, Marco
    Serrano, Salvatore
    [J]. 2019 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS (ICNC), 2019, : 350 - 354
  • [5] An FPGA implementation of real-time K-means clustering for color images
    Saegusa, Takashi
    Maruyama, Tsutomu
    [J]. JOURNAL OF REAL-TIME IMAGE PROCESSING, 2007, 2 (04) : 309 - 318
  • [6] An FPGA implementation of real-time K-means clustering for color images
    Takashi Saegusa
    Tsutomu Maruyama
    [J]. Journal of Real-Time Image Processing, 2007, 2 : 309 - 318
  • [7] High-Level Synthesis of Online K-Means Clustering Hardware for a Real-Time Image Processing Pipeline
    Badawi, Aiman
    Bilal, Muhammad
    [J]. JOURNAL OF IMAGING, 2019, 5 (03)
  • [8] Real-time segmentation of color images based on the k-means clustering on FPGA
    Saegusa, Takashi
    Maruyama, Tsutomu
    [J]. ICFPT 2007: INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE TECHNOLOGY, PROCEEDINGS, 2007, : 329 - 332
  • [9] Implementation of Real-Time Skin Segmentation Based on K-Means Clustering Method
    De, Souranil
    Rakshit, Soumik
    Biswas, Abhik
    Saha, Srinjoy
    Datta, Sujoy
    [J]. COMPUTATIONAL VISION AND BIO-INSPIRED COMPUTING, 2020, 1108 : 964 - 973
  • [10] K-Means Cloning: Adaptive Spherical K-Means Clustering
    Hedar, Abdel-Rahman
    Ibrahim, Abdel-Monem M.
    Abdel-Hakim, Alaa E.
    Sewisy, Adel A.
    [J]. ALGORITHMS, 2018, 11 (10):