Smoothing Riemannian metrics with bounded Ricci curvatures in dimension four

被引:8
|
作者
Li, Ye [1 ]
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
关键词
Local Ricci flow; UNIFORMLY ELLIPTIC-OPERATORS; EINSTEIN MANIFOLDS; CONVERGENCE;
D O I
10.1016/j.aim.2009.10.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain it local smoothing result for Riemannian manifolds with bounded Ricci curvatures in dimension four. More precisely, given a Riemannian metric with bounded Ricci curvatures and small L(2)-norm of curvatures on a metric ball, we can find a smooth metric with bounded curvature which is C(1,alpha)-close to the original metric on a smaller ball but still of definite size. (c) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1924 / 1957
页数:34
相关论文
共 50 条