Climate change impact assessment on pluvial flooding using a distribution-based bias correction of regional climate model simulations

被引:45
|
作者
Hosseinzadehtalaei, Parisa [1 ]
Ishadi, Nabilla Khairunnisa [1 ]
Tabari, Hossein [1 ]
Willems, Patrick [1 ,2 ]
机构
[1] Katholieke Univ Leuven, Dept Civil Engn, Leuven, Belgium
[2] Vrije Univ Brussel, Dept Hydrol & Hydraul Engn, Brussels, Belgium
基金
比利时弗兰德研究基金会;
关键词
Climate change signals; Extreme precipitation; Statistical downscaling; Scaling relation; Urban flood inundation; PRECIPITATION EXTREMES; DRAINAGE SYSTEMS; TIME-SERIES; EURO-CORDEX; RAINFALL; FUTURE; RESOLUTION; UCCLE; TEMPERATURE; PERFORMANCE;
D O I
10.1016/j.jhydrol.2021.126239
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The expected intensification of extreme precipitation events under climate change likely results in more frequent and intense pluvial floods worldwide. To study the climate change impact on urban pluvial flooding, fine-scale climate model simulations are needed. The number of such simulations is, however, still limited and not widely available, thus entailing the downscaling of the model outputs. One of the commonly used methods to meet this demand is statistical downscaling, where the statistical properties of large(r)-scale climate simulations are used to derive local climate variables. This study focuses on applying a distribution-based bias correction method on regional climate model (RCM) simulations to explore how climate change affects extreme precipitation and urban flood events at the end of this century (2071-2100). A 1D-2D hydrodynamic model, implemented in Infoworks ICM, is used to simulate pluvial flood events for several return periods for a case study in the city of Antwerp in Belgium. The results show that the statistical downscaling approach can effectively decrease the bias in the model simulations and offer strong scaling relations to derive high-resolution extreme precipitation time series. The analyses also reveal that climate change may cause an increase of 16%, 31%, 47%, 63%, 73% and 84% in the flood volume for 2-, 5-, 10-, 20-, 30- and 50-year return periods, respectively. This projected increase in the flood volume enlarges the inundated area by 32%, 49%, 56%, 58%, 58% and 59% for the respective return periods. The flood frequency is also projected to almost double in the future, so that a 5-year flood event in the historical period will most likely be a 2-year event in the future period.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Bias correction of regional climate model simulations for the impact assessment of the climate change in Egypt
    Gado, Tamer A.
    Mohameden, Mahmoud B.
    Rashwan, Ibrahim M. H.
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (14) : 20200 - 20220
  • [2] Bias correction of regional climate model simulations for the impact assessment of the climate change in Egypt
    Tamer A. Gado
    Mahmoud B. Mohameden
    Ibrahim M. H. Rashwan
    Environmental Science and Pollution Research, 2022, 29 : 20200 - 20220
  • [3] Distribution-based pooling for combination and multi-model bias correction of climate simulations
    Vrac, Mathieu
    Allard, Denis
    Mariethoz, Gregoire
    Thao, Soulivanh
    Schmutz, Lucas
    EARTH SYSTEM DYNAMICS, 2024, 15 (03) : 735 - 762
  • [4] Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods
    Teutschbein, Claudia
    Seibert, Jan
    JOURNAL OF HYDROLOGY, 2012, 456 : 12 - 29
  • [5] Impact of climate change on rainfall over Mumbai using Distribution-based Scaling of Global Climate Model projections
    Rana, Arun
    Foster, Kean
    Bosshard, Thomas
    Olsson, Jonas
    Bengtsson, Lars
    JOURNAL OF HYDROLOGY-REGIONAL STUDIES, 2014, 1 : 107 - 128
  • [6] Distribution-based scaling to improve usability of regional climate model projections for hydrological climate change impacts studies
    Yang, Wei
    Andreasson, Johan
    Graham, L. Phil
    Olsson, Jonas
    Rosberg, Jorgen
    Wetterhall, Fredrik
    HYDROLOGY RESEARCH, 2010, 41 (3-4): : 211 - 229
  • [7] Comparison of Hydrological Simulations of Climate Change Using Perturbation of Observations and Distribution-Based Scaling
    van Roosmalen, Lieke
    Sonnenborg, Torben O.
    Jensen, Karsten H.
    Christensen, J. H.
    VADOSE ZONE JOURNAL, 2011, 10 (01) : 136 - 150
  • [8] Statistical downscaling and bias correction of climate model outputs for climate change impact assessment in the US northeast
    Ahmed, Kazi Farzan
    Wang, Guiling
    Silander, John
    Wilson, Adam M.
    Allen, Jenica M.
    Horton, Radley
    Anyah, Richard
    GLOBAL AND PLANETARY CHANGE, 2013, 100 : 320 - 332
  • [9] Bias Correction of Regional Climate Model Simulations in a Region of Complex Orography
    Bordoy, Roger
    Burlando, Paolo
    JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2013, 52 (01) : 82 - 101
  • [10] The effect of bias correction and climate model resolution on wheat simulations forced with a regional climate model ensemble
    Macadam, Ian
    Argueeso, Daniel
    Evans, Jason P.
    Liu, De Li
    Pitman, Andy J.
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2016, 36 (14) : 4577 - 4591