Identifying and Validating Distinct Clinical Phenotypes in Bipolar Disorders Using Neurocognitive Data, Neuroimaging Scans and Machine Learning

被引:0
|
作者
Irungu, Benson [1 ]
Mwangi, Benson [1 ]
Wu, Mon-Ju [1 ]
Bauer, Isabelle [1 ]
Sanches, Marsal [1 ]
Zunta-Soares, Giovana [1 ]
Soares, Jair [1 ]
机构
[1] Univ Texas Hlth Sci Ctr Houston, Houston, TX 77030 USA
关键词
Research domain criteria (RDoC); machine learning; bipolar disorders; neuroimaging;
D O I
暂无
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
M226
引用
收藏
页码:S261 / S262
页数:2
相关论文
共 50 条
  • [1] Identifying and Validating Distinct Clinical Phenotypes in Bipolar Disorders Using Neurocognitive Data, Neuroimaging Scans and Machine Learning
    Wu, Mon-Ju
    Mwangi, Benson
    Bauer, Isabelle E.
    Sanches, Marsal
    Kapczinski, Flavio
    Zunta-Soares, Giovana B.
    Meyer, Thomas D.
    Soares, Jair C.
    [J]. BIOLOGICAL PSYCHIATRY, 2015, 77 (09)
  • [2] Identification and individualized prediction of clinical phenotypes in bipolar disorders using neurocognitive data, neuroimaging scans and machine learning
    Wu, Mon-Ju
    Mwangi, Benson
    Bauer, Isabelle E.
    Passos, Ives C.
    Sanches, Marsal
    Zunta-Soares, Giovana B.
    Meyer, Thomas D.
    Hasan, Khader M.
    Soares, Jair C.
    [J]. NEUROIMAGE, 2017, 145 : 254 - 264
  • [3] Individualized Prediction of Euthymic Bipolar Disorder and Euthymic Major Depressive Disorder Patients Using Neurocognitive scores, Neuroimaging Data and Machine Learning
    Soares, Jair
    Wu, Mon-Ju
    Bauer, Isabelle E.
    Passos, Ives
    Zunta-Soares, Giovana
    Glahn, David
    Mwangi, Benson
    [J]. BIOLOGICAL PSYCHIATRY, 2017, 81 (10) : S247 - S247
  • [4] A proof of concept machine learning analysis using multimodal neuroimaging and neurocognitive measures as predictive biomarker in bipolar disorder
    Achalia, Rashmin
    Sinha, Anannya
    Jacob, Arpitha
    Achalia, Garimaa
    Kaginalkar, Varsha
    Venkatasubramanian, Ganesan
    Rao, Naren P.
    [J]. ASIAN JOURNAL OF PSYCHIATRY, 2020, 50
  • [5] Machine learning applied to the prediction of relapse, hospitalization, and suicide in bipolar disorder using neuroimaging and clinical data: A systematic review
    Amanollahi, Mobina
    Jameie, Melika
    Looha, Mehdi Azizmohammad
    Basti, Fatemeh A.
    Cattarinussi, Giulia
    Moghaddam, Hossein Sanjari
    Di Camillo, Fabio
    Akhondzadeh, Shahin
    Pigoni, Alessandro
    Sambataro, Fabio
    Brambilla, Paolo
    Delvecchio, Giuseppe
    [J]. JOURNAL OF AFFECTIVE DISORDERS, 2024, 361 : 778 - 797
  • [6] Identifying facial phenotypes of genetic disorders using deep learning
    Gurovich, Yaron
    Hanani, Yair
    Bar, Omri
    Nadav, Guy
    Fleischer, Nicole
    Gelbman, Dekel
    Basel-Salmon, Lina
    Krawitz, Peter M.
    Kamphausen, Susanne B.
    Zenker, Martin
    Bird, Lynne M.
    Gripp, Karen W.
    [J]. NATURE MEDICINE, 2019, 25 (01) : 60 - +
  • [7] Identifying facial phenotypes of genetic disorders using deep learning
    Yaron Gurovich
    Yair Hanani
    Omri Bar
    Guy Nadav
    Nicole Fleischer
    Dekel Gelbman
    Lina Basel-Salmon
    Peter M. Krawitz
    Susanne B. Kamphausen
    Martin Zenker
    Lynne M. Bird
    Karen W. Gripp
    [J]. Nature Medicine, 2019, 25 : 60 - 64
  • [8] Identification of Distinct Neurophysiological Phenotypes of DPN Using Machine Learning
    Gozani, Shai N.
    [J]. DIABETES, 2015, 64 : A616 - A616
  • [9] Identification of distinct clinical phenotypes of cardiogenic shock using machine learning consensus clustering approach
    Li Wang
    Yufeng Zhang
    Renqi Yao
    Kai Chen
    Qiumeng Xu
    Renhong Huang
    Zhiguo Mao
    Yue Yu
    [J]. BMC Cardiovascular Disorders, 23
  • [10] Identification of distinct clinical phenotypes of cardiogenic shock using machine learning consensus clustering approach
    Wang, Li
    Zhang, Yufeng
    Yao, Renqi
    Chen, Kai
    Xu, Qiumeng
    Huang, Renhong
    Mao, Zhiguo
    Yu, Yue
    [J]. BMC CARDIOVASCULAR DISORDERS, 2023, 23 (01)