Zero sets of equivariant maps from products of spheres to Euclidean spaces

被引:4
|
作者
de Mattos, Denise [1 ]
Pergher, Pedro L. Q. [2 ]
dos Santos, Edivaldo L. [2 ]
Singh, Mahender [3 ]
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Dept Matemat, CP 668, BR-13560970 Sao Carlos, SP, Brazil
[2] Univ Fed Sao Carlos, Dept Matemat, Ctr Ciencias Exatas & Tecnol, CP 676, BR-13565905 Sao Carlos, SP, Brazil
[3] Indian Inst Sci Educ & Res IISER Mohali, Sect 81,PO Manauli, Manauli 140306, Punjab, India
基金
巴西圣保罗研究基金会;
关键词
Antipodal map; Cohomological dimension; Continuous cohomology; Equivariant map; BORSUK-ULAM THEOREMS;
D O I
10.1016/j.topol.2015.12.063
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let E -> B be a fiber bundle and E' -> B be a vector bundle. Let G be a compact group acting fiber preservingly and freely on both E and E' - 0, where 0 is the zero section of E' -> B. Let f : E -> E' be a fiber preserving G-equivariant map, and let Z(f) = {x is an element of E vertical bar f (x) = 0} be the zero set of f. It is an interesting problem to estimate the dimension of the set Z(f). In 1988, Dold [5] obtained a lower bound for the cohomological dimension of the zero set Z(f) when E -> B is the sphere bundle associated with a vector bundle which is equipped with the antipodal action of G = Z/2. In this paper, we generalize this result to products of finitely many spheres equipped with the diagonal antipodal action of Z/2. We also prove a Bourgin-Yang type theorem for products of spheres equipped with the diagonal antipodal action of Z/2. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:7 / 20
页数:14
相关论文
共 50 条