Shortest covers of all cyclic shifts of a string

被引:1
|
作者
Crochemore, Maxime [1 ]
Iliopoulos, Costas S. [1 ]
Radoszewski, Jakub [2 ]
Rytter, Wojciech [2 ]
Wale, Tomasz [2 ]
Zuba, Wiktor [2 ]
机构
[1] Kings Coll London, Dept Informat, London, England
[2] Univ Warsaw, Inst Informat, Warsaw, Poland
关键词
Cover; Quasiperiod; Seed; Fibonacci string;
D O I
10.1016/j.tcs.2021.03.011
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A factor C of a string S is called a cover of S, if each position of S is contained in an occurrence of C. Breslauer (1992) [3] proposed a well-known O(n)-time algorithm that computes the shortest cover of every prefix of a string of length n. We show an O(n logn)time and O(n)-space algorithm that computes the shortest cover of every cyclic shift of a string of length n and an O(n)-time algorithm that computes the shortest among these covers. We also provide a combinatorial characterization of shortest covers of cyclic shifts of Fibonacci strings that leads to efficient algorithms for computing these covers. We further consider the bound on the number of different lengths of shortest covers of cyclic shifts of the same string of length n. We show that this number is Theta(logn) for Fibonacci strings. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:70 / 81
页数:12
相关论文
共 50 条
  • [1] Shortest Covers of All Cyclic Shifts of a String
    Crochemore, Maxime
    Iliopoulos, Costas S.
    Radoszewski, Jakub
    Rytter, Wojciech
    Straszynski, Juliusz
    Walen, Tomasz
    Zuba, Wiktor
    [J]. WALCOM: ALGORITHMS AND COMPUTATION (WALCOM 2020), 2020, 12049 : 69 - 80
  • [2] SHORTEST STRING CONTAINING ALL PERMUTATIONS
    MOHANTY, SP
    [J]. DISCRETE MATHEMATICS, 1980, 31 (01) : 91 - 95
  • [3] SHORTEST STRING CONTAINING ALL PERMUTATIONS
    KOUTAS, PJ
    HU, TC
    [J]. DISCRETE MATHEMATICS, 1975, 11 (02) : 125 - 132
  • [4] AN OPTIMAL ALGORITHM TO COMPUTE ALL THE COVERS OF A STRING
    MOORE, D
    SMYTH, WF
    [J]. INFORMATION PROCESSING LETTERS, 1994, 50 (05) : 239 - 246
  • [5] Correction to 'An optimal algorithm to compute all the covers of a string'
    Moore, D.
    Smyth, W.F.
    [J]. Information Processing Letters, 1995, 54 (02):
  • [6] A work-time optimal algorithm for computing all string covers
    Iliopoulos, CS
    Park, K
    [J]. THEORETICAL COMPUTER SCIENCE, 1996, 164 (1-2) : 299 - 310
  • [7] Finding all covers of an indeterminate string in O(n) time on average
    Bari, Md Faizul
    Rahman, M. Sohel
    Shahriyar, Rifat
    [J]. PROCEEDINGS OF THE PRAGUE STRINGOLOGY CONFERENCE 2009, 2009, : 263 - 271
  • [8] ON SHORTEST COCYCLE COVERS OF GRAPHS
    JAEGER, F
    KHELLADI, A
    MOLLARD, M
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1985, 39 (02) : 153 - 163
  • [9] Computing the λ-covers of a string
    Guo, Qing
    Zhang, Hui
    Iliopoulos, Costas S.
    [J]. INFORMATION SCIENCES, 2007, 177 (19) : 3957 - 3967