Boundary estimates for certain degenerate and singular parabolic equations

被引:10
|
作者
Avelin, Benny [1 ]
Gianazza, Ugo [2 ]
Salsa, Sandro [3 ]
机构
[1] Uppsala Univ, Dept Math, S-75106 Uppsala, Sweden
[2] Univ Pavia, Dipartimento Matemat F Casorati, Via Ferrata 1, I-27100 Pavia, Italy
[3] Politecn Milan, Dipartimento Matemat F Brioschi, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
关键词
Degenerate and singular parabolic equations; Harnack estimates; boundary Harnack inequality; Carleson estimate; LIPSCHITZ FREE-BOUNDARIES; P-HARMONIC-FUNCTIONS; NONNEGATIVE SOLUTIONS; HARNACK INEQUALITY; 2-PHASE PROBLEMS; ELLIPTIC-OPERATORS; REGULARITY; BEHAVIOR; PRINCIPLE; LAPLACIAN;
D O I
10.4171/JEMS/593
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the boundary behavior of non-negative solutions to a class of degenerate/singular parabolic equations, whose prototype is the parabolic p-Laplace equation. Assuming that such solutions continuously vanish on some distinguished part of the lateral part S-T of a Lipschitz cylinder, we prove Carleson-type estimates, and deduce some consequences under additional assumptions on the equation or the domain. We then prove analogous estimates for non-negative solutions to a class of degenerate/singular parabolic equations of porous medium type.
引用
收藏
页码:381 / 424
页数:44
相关论文
共 50 条
  • [1] Boundary regularity for degenerate and singular parabolic equations
    Bjorn, Anders
    Bjorn, Jana
    Gianazza, Ugo
    Parviainen, Mikko
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 52 (3-4) : 797 - 827
  • [2] Boundary regularity for degenerate and singular parabolic equations
    Anders Björn
    Jana Björn
    Ugo Gianazza
    Mikko Parviainen
    [J]. Calculus of Variations and Partial Differential Equations, 2015, 52 : 797 - 827
  • [3] Schauder estimates for parabolic equations with degenerate or singular weights
    Audrito, Alessandro
    Fioravanti, Gabriele
    Vita, Stefano
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (08)
  • [4] Boundary estimates for solutions to linear degenerate parabolic equations
    Nystrom, Kaj
    Persson, Hakan
    Sande, Olow
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (08) : 3577 - 3614
  • [5] Holder gradient estimates for a class of singular or degenerate parabolic equations
    Imbert, Cyril
    Jin, Tianling
    Silvestre, Luis
    [J]. ADVANCES IN NONLINEAR ANALYSIS, 2019, 8 (01) : 845 - 867
  • [6] Dirichlet Boundary Conditions for Degenerate and Singular Nonlinear Parabolic Equations
    Fabio Punzo
    Marta Strani
    [J]. Potential Analysis, 2017, 47 : 151 - 168
  • [7] BOUNDARY CONTROLLABILITY FOR A COUPLED SYSTEM OF DEGENERATE/SINGULAR PARABOLIC EQUATIONS
    Allal, Brahim
    Hajjaj, Abdelkarim
    Salhi, Jawad
    Sbai, Amine
    [J]. EVOLUTION EQUATIONS AND CONTROL THEORY, 2021, : 1579 - 1604
  • [8] Dirichlet Boundary Conditions for Degenerate and Singular Nonlinear Parabolic Equations
    Punzo, Fabio
    Strani, Marta
    [J]. POTENTIAL ANALYSIS, 2017, 47 (02) : 151 - 168
  • [9] Liouville-type theorems for certain degenerate and singular parabolic equations
    DiBenedetto, Emmanuele
    Gianazza, Ugo
    Vespri, Vincenzo
    [J]. COMPTES RENDUS MATHEMATIQUE, 2010, 348 (15-16) : 873 - 877
  • [10] L-LOC(INFINITY)-ESTIMATES FOR DEGENERATE AND SINGULAR PARABOLIC EQUATIONS
    PORZIO, MM
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1991, 17 (11) : 1093 - 1107