Using causal forests to assess heterogeneity in cost-effectiveness analysis

被引:12
|
作者
Bonander, Carl [1 ]
Svensson, Mikael [1 ]
机构
[1] Univ Gothenburg, Inst Med, Sch Publ Hlth & Community Med, Gothenburg, Sweden
关键词
causal forest; cost‐ effectiveness analysis; machine learning; stratified analysis; treatment heterogeneity; HEALTH; FRAMEWORK; ECONOMETRICS;
D O I
10.1002/hec.4263
中图分类号
F [经济];
学科分类号
02 ;
摘要
We develop a method for data-driven estimation and analysis of heterogeneity in cost-effectiveness analyses (CEA) with experimental or observational individual-level data. Our implementation uses causal forests and cross-fitted augmented inverse probability weighted learning to estimate heterogeneity in incremental outcomes, costs and net monetary benefits, as well as other parameters relevant to CEA. We also show how the results can be visualized in relevant ways for the analysis of heterogeneity in CEA, such as using individual-level cost effectiveness planes. Using a simulated dataset and an R package implementing our methods, we show how the approach can be used to estimate the average cost-effectiveness in the entire sample or in subpopulations, explore and analyze the heterogeneity in incremental outcomes, costs and net monetary benefits (and their determinants), and learn policy rules from the data.
引用
收藏
页码:1818 / 1832
页数:15
相关论文
共 50 条
  • [1] USING MACHINE LEARNING TO ASSESS HETEROGENEITY IN COST-EFFECTIVENESS STUDIES OF HEALTH PROGRAMS
    Svensson, Mikael
    Bonander, Carl
    [J]. MEDICAL DECISION MAKING, 2020, 40 (01) : E133 - E134
  • [2] Subgroups and Heterogeneity in Cost-Effectiveness Analysis
    Mark Sculpher
    [J]. PharmacoEconomics, 2008, 26 : 799 - 806
  • [3] Subgroups and heterogeneity in cost-effectiveness analysis
    Sculpher, Mark
    [J]. PHARMACOECONOMICS, 2008, 26 (09) : 799 - 806
  • [4] Cost-effectiveness of cataract surgery -: Method to assess cost-effectiveness using registry data
    Kobelt, G
    Lundström, M
    Stenevi, U
    [J]. JOURNAL OF CATARACT AND REFRACTIVE SURGERY, 2002, 28 (10): : 1742 - 1749
  • [5] USING METAMODELING TO APPROXIMATE COST-EFFECTIVENESS ACCEPTABILITY CURVES OF COST-EFFECTIVENESS ANALYSIS
    Xie, Jingyi
    Chen, Qiushi
    [J]. MEDICAL DECISION MAKING, 2020, 40 (01) : E362 - E364
  • [6] INFLATION ANALYSIS AS A TOOL TO ASSESS COST-EFFECTIVENESS OF CANCER TREATMENT
    Eliseeva, E.
    Apanasevich, V
    Solodyankina, T.
    [J]. VALUE IN HEALTH, 2010, 13 (07) : A282 - A282
  • [7] Exploring Heterogeneity in Cost-Effectiveness Using Machine Learning Methods
    Hattab, Zaid
    Doherty, Edel
    Sadique, Zia
    Ramnarayan, Padmanabhan
    O'Neill, Stephen
    [J]. MEDICAL CARE, 2024, 62 (07) : 449 - 457
  • [8] WILL COST-EFFECTIVENESS ANALYSIS WORSEN THE COST-EFFECTIVENESS OF CARE
    HIMMELSTEIN, DU
    WOOLHANDLER, S
    BOR, DH
    [J]. CLINICAL RESEARCH, 1987, 35 (03): : A744 - A744
  • [9] Methods for estimating complier average causal effects for cost-effectiveness analysis
    DiazOrdaz, K.
    Franchini, A. J.
    Grieve, R.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2018, 181 (01) : 277 - 297
  • [10] The cost-effectiveness of biodiversity surveys in tropical forests
    Gardner, Toby A.
    Barlow, Jos
    Araujo, Ivanei S.
    Avila-Pires, Teresa Cristina
    Bonaldo, Alexandre B.
    Costa, Joana E.
    Esposito, Maria Cristina
    Ferreira, Leandro V.
    Hawes, Joseph
    Hernandez, Malva I. M.
    Hoogmoed, Marinus S.
    Leite, Rafael N.
    Lo-Man-Hung, Nancy F.
    Malcolm, Jay R.
    Martins, Marlucia B.
    Mestre, Luiz A. M.
    Miranda-Santos, Ronildon
    Overal, William L.
    Parry, Luke
    Peters, Sandra L.
    Ribeiro-Junior, Marco Antonio
    da Silva, Maria N. F.
    Motta, Catarina da Silva
    Peres, Carlos A.
    [J]. ECOLOGY LETTERS, 2008, 11 (02) : 139 - 150