Hybrid Comprehensive Learning Particle Swarm Optimizer with Adaptive Starting Local Search

被引:1
|
作者
Cao, Yulian [1 ]
Li, Wenfeng [1 ]
Chaovalitwongse, W. Art [2 ]
机构
[1] Wuhan Univ Technol, Sch Logist Engn, Wuhan, Hubei, Peoples R China
[2] Univ Arkansas, Dept Ind Engn, Inst Adv Data Analyt, Fayetteville, AR 72701 USA
基金
中国国家自然科学基金;
关键词
Quasi-entropy; Adaptive strategy; Population diversity; Local search;
D O I
10.1007/978-3-319-61824-1_16
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Particle Swarm Optimization (PSO) offers efficient simultaneous global and local searches but is challenged with the problem of slow local convergence. To address this issue, a hybrid comprehensive learning PSO algorithm with adaptive starting local search (ALS-HCLPSO) is proposed. Determining when to start local search is the main of ALS-HCLPSO. A quasi-entropy index is innovatively utilized as the criterion of population diversity to depict an aggregation degree of particles and to ascertain whether the global optimum basin has been explored. This adaptive strategy ensures the proper starting of local search. The test results on eight multimodal benchmark functions demonstrate the performance superiority of ALS-HCLPSO. And comparison results on six advanced PSO variants further test the validity and superiority of ALS-HCLPSO algorithm.
引用
收藏
页码:148 / 157
页数:10
相关论文
共 50 条
  • [1] A Hybrid Particle Swarm Optimizer with Adaptive Pattern Search
    Yan, Ping
    Tang, Lixin
    PROGRESS IN INTELLIGENCE COMPUTATION AND APPLICATIONS, 2008, : 325 - 329
  • [2] Adaptive comprehensive learning particle swarm optimizer with history learning
    Liang, J. J.
    Suganthan, P. N.
    SIMULATED EVOLUTION AND LEARNING, PROCEEDINGS, 2006, 4247 : 213 - 220
  • [3] Adaptive Parameters for a Modified Comprehensive Learning Particle Swarm Optimizer
    Zheng, Yu-Jun
    Ling, Hai-Feng
    Guan, Qiu
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2012, 2012
  • [4] The Self-adaptive Comprehensive Learning Particle Swarm Optimizer
    Ismail, Adiel
    Engelbrecht, Andries P.
    SWARM INTELLIGENCE (ANTS 2012), 2012, 7461 : 156 - 167
  • [5] Adaptive Parameter Selection in Comprehensive Learning Particle Swarm Optimizer
    Hasanzadeh, Mohammad
    Meybodi, Mohammad Reza
    Ebadzadeh, Mohammad Mehdi
    ARTIFICIAL INTELLIGENCE AND SIGNAL PROCESSING, AISP 2013, 2014, 427 : 267 - 276
  • [6] A hybrid particle swarm optimization with adaptive local search
    Tang J.
    Zhao X.
    Journal of Networks, 2010, 5 (04) : 411 - 418
  • [7] Hybrid particle swarm optimizer with line search
    Liu, Y
    Qin, Z
    Shi, ZW
    2004 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOLS 1-7, 2004, : 3751 - 3755
  • [8] Evaluation of comprehensive learning particle swarm optimizer
    Liang, JJ
    Qin, AK
    Suganthan, PN
    Baskar, S
    NEURAL INFORMATION PROCESSING, 2004, 3316 : 230 - 235
  • [9] Coevolutionary Comprehensive Learning Particle Swarm Optimizer
    Liang, J. J.
    Shang Zhigang
    Li Zhihui
    2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [10] A modified comprehensive learning particle swarm optimizer
    Pang J.
    Dong H.
    He J.
    Ding R.
    International Journal of Performability Engineering, 2019, 15 (09): : 2553 - 2562