Stacked Denoising Autoencoder-based Deep Collaborative Filtering Using the Change of Similarity

被引:14
|
作者
Suzuki, Yosuke [1 ]
Ozaki, Tomonobu [2 ]
机构
[1] Nihon Univ, Grad Sch Integrated Basic Sci, Tokyo, Japan
[2] Nihon Univ, Dept Informat Sci, Tokyo, Japan
关键词
D O I
10.1109/WAINA.2017.72
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Recommender systems based on deep learning technology pay huge attention recently. In this paper, we propose a collaborative filtering based recommendation algorithm that utilizes the difference of similarities among users derived from different layers in stacked denoising autoencoders. Since different layers in a stacked autoencoder represent the relationships among items with rating at different levels of abstraction, we can expect to make recommendations more novel, various and serendipitous, compared with a normal collaborative filtering using single similarity. The results of experiments using MovieLens dataset show that the proposed recommendation algorithm can improve the diversity of recommendation lists without great loss of accuracy.
引用
收藏
页码:498 / 502
页数:5
相关论文
共 50 条
  • [1] Autoencoder-Based Collaborative Filtering
    Ouyang, Yuanxin
    Liu, Wenqi
    Rong, Wenge
    Xiong, Zhang
    NEURAL INFORMATION PROCESSING, ICONIP 2014, PT III, 2014, 8836 : 284 - 291
  • [2] Auxiliary Stacked Denoising Autoencoder based Collaborative Filtering Recommendation
    Mu, Ruihui
    Zeng, Xiaoqin
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2020, 14 (06): : 2310 - 2332
  • [3] An efficient method for autoencoder-based collaborative filtering
    Wang, Yi-Lei
    Tang, Wen-Zhe
    Yang, Xian-Jun
    Wu, Ying-Jie
    Chen, Fu-Ji
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2019, 31 (23):
  • [4] A Novel Stacked Denoising Autoencoder-Based Reconstruction Framework for Cerenkov Luminescence Tomography
    Cao, Xin
    Wei, Xiao
    Yan, Feng
    Wang, Lin
    Su, Linzhi
    Hou, Yuqing
    Geng, Guohua
    He, Xiaowei
    IEEE ACCESS, 2019, 7 : 85178 - 85189
  • [5] Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification
    Lu, Chen
    Wang, Zhen-Ya
    Qin, Wei -Li
    Ma, Jian
    SIGNAL PROCESSING, 2017, 130 : 377 - 388
  • [6] Motion Recognition by Using a Stacked Autoencoder-Based Deep Learning Algorithm with Smart Phones
    Zhou, Xi
    Guo, Junqi
    Wang, Shenling
    WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS, 2015, 9204 : 778 - 787
  • [7] Enhanced Stacked Denoising Autoencoder-Based Feature Learning for Recognition of Wafer Map Defects
    Yu, Jianbo
    IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, 2019, 32 (04) : 613 - 624
  • [8] Data-driven polyline simplification using a stacked autoencoder-based deep neural network
    Yu, Wenhao
    Chen, Yujie
    TRANSACTIONS IN GIS, 2022, 26 (05) : 2302 - 2325
  • [9] Data-driven polyline simplification using a stacked autoencoder-based deep neural network
    School of Geography and Information Engineering, China University of Geosciences, Wuhan, China
    不详
    Trans. GIS, 2022, 5 (2302-2325):
  • [10] A Stacked Autoencoder-Based Deep Neural Network for Achieving Gearbox Fault Diagnosis
    Liu, Guifang
    Bao, Huaiqian
    Han, Baokun
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2018, 2018