Non-Nehari Manifold Method for Fractional p-Laplacian Equation with a Sign-Changing Nonlinearity

被引:1
|
作者
Luo, Huxiao [1 ]
Li, Shengjun [2 ,3 ]
He, Wenfeng [2 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] Hainan Univ, Coll Informat Sci & Technol, Haikou 570228, Hainan, Peoples R China
[3] Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
D O I
10.1155/2018/7935706
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the following fractional p-Laplacian equation: (-Delta)(p)(alpha)u + V(x)vertical bar u vertical bar(p-2)u = f(x, u) - Gamma(x)vertical bar u vertical bar(q-2)u, x subset of R-N, where N <= 2, p(alpha)* > q > p >= 2, alpha is an element of (0,1), (-Delta)(p)(alpha) is the fractional p-Laplacian, and Gamma is an element of L-infinity(R-N) and Gamma(x) >= 0 for a.e. x is an element of R-N. f has the subcritical growth but higher than Gamma(x)vertical bar u vertical bar(q-2)u; however, the nonlinearity f(x, u)-Gamma(x)vertical bar u vertical bar(q-2) may change sign. If V is coercive, we investigate the existence of ground state solutions for p-Laplacian equation.
引用
收藏
页数:5
相关论文
共 50 条