Time-splitting methods with charge conservation for the nonlinear Dirac equation

被引:14
|
作者
Li, Shu-Cun [1 ]
Li, Xiang-Gui [1 ]
Shi, Fang-Yuan [2 ]
机构
[1] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
[2] Hebei Normal Univ, Coll Math & Informat Sci, Shijiazhuang 050024, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
binary collision; charge conservation; nonlinear Dirac equation; stability; time-splitting method; SOLITARY WAVES; DIFFERENCE-SCHEMES; 4TH-ORDER COMPACT; NUMERICAL-METHOD; DYNAMICS; FIELD; EFFICIENT; FERMIONS;
D O I
10.1002/num.22154
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, four numerical time-splitting methods are proposed for the (1+1)-dimensional nonlinear Dirac equation. All of these methods (or schemes) are proved to satisfy the charge conservation in the discrete level. To enhance the computation efficiency, the block Thomas algorithm is adopted. Numerical experiments are given to test the accuracy order for these schemes, to simulate numerically the binary collision including two standing waves and two moving solitons, meanwhile, the dynamic properties for the nonlinear Dirac equation are discussed. (c) 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1582-1602, 2017
引用
收藏
页码:1582 / 1602
页数:21
相关论文
共 50 条
  • [1] SUPER-RESOLUTION OF TIME-SPLITTING METHODS FOR THE DIRAC EQUATION IN THE NONRELATIVISTIC REGIME
    Bao, Weizhu
    Cai, Yongyong
    Yin, Jia
    [J]. MATHEMATICS OF COMPUTATION, 2020, 89 (325) : 2141 - 2173
  • [2] Improved uniform error bounds on time-splitting methods for the long-time dynamics of the weakly nonlinear Dirac equation
    Bao, Weizhu
    Cai, Yongyong
    Feng, Yue
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2024, 44 (02) : 654 - 679
  • [3] UNIFORM ERROR BOUNDS OF TIME-SPLITTING METHODS FOR THE NONLINEAR DIRAC EQUATION IN THE NONRELATIVISTIC REGIME WITHOUT MAGNETIC POTENTIAL
    Bao, Weizhu
    Cai, Yongyong
    Yin, Jia
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (02) : 1040 - 1066
  • [4] On time-splitting methods for nonlinear Schrodinger equation with highly oscillatory potential
    Su, Chunmei
    Zhao, Xiaofei
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2020, 54 (05) : 1491 - 1508
  • [5] IMPROVED UNIFORM ERROR BOUNDS ON TIME-SPLITTING METHODS FOR THE LONG-TIME DYNAMICS OF THE DIRAC EQUATION WITH SMALL POTENTIALS
    Bao, Weizhu
    Feng, Yue
    Yin, Jia
    [J]. MULTISCALE MODELING & SIMULATION, 2022, 20 (03): : 1040 - 1062
  • [6] IMPROVED UNIFORM ERROR BOUNDS OF THE TIME-SPLITTING METHODS FOR THE LONG-TIME (NONLINEAR) SCHRODINGER EQUATION
    Bao, W. E. I. Z. H. U.
    Cai, Y. O. N. G. Y. O. N. G.
    Feng, Y. U. E.
    [J]. MATHEMATICS OF COMPUTATION, 2023, 92 (341) : 1109 - 1139
  • [7] TIME-SPLITTING METHODS TO SOLVE THE STOCHASTIC INCOMPRESSIBLE STOKES EQUATION
    Carelli, Erich
    Hausenblas, Erika
    Prohl, Andreas
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (06) : 2917 - 2939
  • [8] A fourth-order compact time-splitting Fourier pseudospectral method for the Dirac equation
    Bao, Weizhu
    Yin, Jia
    [J]. RESEARCH IN THE MATHEMATICAL SCIENCES, 2019, 6 (01)
  • [9] A fourth-order compact time-splitting Fourier pseudospectral method for the Dirac equation
    Weizhu Bao
    Jia Yin
    [J]. Research in the Mathematical Sciences, 2019, 6
  • [10] UNIFORMLY ACCURATE TIME-SPLITTING METHODS FOR THE SEMICLASSICAL LINEAR SCHRODINGER EQUATION
    Chartier, Philippe
    Le Treust, Loic
    Mehats, Florian
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 53 (02): : 443 - 473