Preset Parameters Calibration of Focal Stack Computational Imaging System

被引:0
|
作者
Hao, Zhicheng [1 ]
Liu, Chang [1 ]
Deng, Xiaojuan [1 ]
机构
[1] Beijing Informat Sci & Technol Univ, Inst Appl Math, Beijing, Peoples R China
基金
美国国家科学基金会;
关键词
computational imaging; focal stack; focus measure; preset position; parameters calibration; DEPTH ESTIMATION; RECONSTRUCTION; CAMERA; FOCUS; SENSOR; LENS;
D O I
10.1117/12.2617688
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Accurate calibration of imaging system parameters is the basis of focal stack computational imaging system. In this paper, we set the focal plane and the corresponding imaging parameters as the preset position of the imaging systems, and define the focus measure by the Sum-modified Laplacian (SML) and feature point density to describe the focus degree of the resolution test chart. The preset positions are obtained by calculating the maximum focus measure, which can be used to realize the reconstruction of the scene depth map and the all-in-focus image. The experimental results show that the preset position calibration method proposed in this paper can achieve the high-precision reconstruction of the depth map and the all-in-focus image of the 3D scene.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Parameters Calibration and Imaging of CT System
    Wu Honghua
    Liu Zhaoke
    Wang Wenqi
    Chu Qiuying
    [J]. 2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 1713 - 1717
  • [2] Computational Calibration and Correction for Gigapixel Imaging System
    Zhang, Jiazhi
    He, Jie
    Li, Haiwen
    Bai, Yuanchao
    Jia, Huizhu
    Tao, Louis
    Mao, Heng
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SENSING AND IMAGING, 2019, 506 : 293 - 302
  • [3] The Effects of Focal Plane Parameters on eSWIR Imaging System Performance
    Hendrick, A.
    Wiley, L.
    Velicu, S.
    Pimpinella, R.
    Lund, J.
    Driggers, R.
    [J]. INFRARED IMAGING SYSTEMS: DESIGN, ANALYSIS, MODELING, AND TESTING XXXV, 2024, 13045
  • [4] Non-frontal Camera Calibration using Focal Stack Imagery
    Kumar, Avinash
    Ahuja, Narendra
    [J]. 2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 202 - 207
  • [5] Software Calibration of a Frequency-Diverse, Multistatic, Computational Imaging System
    Yurduseven, Okan
    Gollub, Jonan N.
    Trofatter, Kenneth P.
    Marks, Daniel L.
    Rose, Alec
    Smith, David R.
    [J]. IEEE ACCESS, 2016, 4 : 2488 - 2497
  • [6] Illumination Calibration for Computational Ghost Imaging
    Yan, Song-Ming
    Sun, Ming-Jie
    Chen, Wen
    Li, Li-Jing
    [J]. PHOTONICS, 2021, 8 (02) : 1 - 8
  • [7] Global Imaging Based on Monomer Subset of Focal Stack Architecture
    Kang Xinkai
    Qiu Jun
    Liu Chang
    He Di
    [J]. LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (24)
  • [8] All-in-focus Imaging from Event Focal Stack
    Lou, Hanyue
    Teng, Minggui
    Yang, Yixin
    Shi, Boxin
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 17357 - 17366
  • [9] Neural network based 3D tracking with a graphene transparent focal stack imaging system
    Zhang, Dehui
    Xu, Zhen
    Huang, Zhengyu
    Gutierrez, Audrey Rose
    Blocker, Cameron J.
    Liu, Che-Hung
    Lien, Miao-Bin
    Cheng, Gong
    Liu, Zhe
    Chun, Il Yong
    Fessler, Jeffrey A.
    Zhong, Zhaohui
    Norris, Theodore B.
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [10] Neural network based 3D tracking with a graphene transparent focal stack imaging system
    Dehui Zhang
    Zhen Xu
    Zhengyu Huang
    Audrey Rose Gutierrez
    Cameron J. Blocker
    Che-Hung Liu
    Miao-Bin Lien
    Gong Cheng
    Zhe Liu
    Il Yong Chun
    Jeffrey A. Fessler
    Zhaohui Zhong
    Theodore B. Norris
    [J]. Nature Communications, 12