HECKE CORRESPONDENCES FOR SMOOTH MODULI SPACES OF SHEAVES

被引:8
|
作者
Negut, Andrei [1 ,2 ]
机构
[1] MIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Simion Stoilow Inst Math, Bucharest, Romania
来源
PUBLICATIONS MATHEMATIQUES DE L IHES | 2022年 / 135卷 / 01期
关键词
HILBERT SCHEME; K-THEORY; HALL ALGEBRA; POINTS; INSTANTONS;
D O I
10.1007/s10240-022-00131-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define functors on the derived category of the moduli space M of stable sheaves on a smooth projective surface (under Assumptions A and S below), and prove that these functors satisfy certain commutation relations. These relations allow us to prove that the given functors induce an action of the elliptic Hall algebra on the K-theory of the moduli spaceM, thus generalizing the action studied by Nakajima, Grojnowski and Baranovsky in cohomology.
引用
收藏
页码:337 / 418
页数:82
相关论文
共 50 条