Lower Bounds for Clique vs. Independent Set

被引:32
|
作者
Goos, Mika [1 ]
机构
[1] Univ Toronto, Dept Comp Sci, Toronto, ON M5S 1A1, Canada
关键词
COMMUNICATION COMPLEXITY; CONJECTURE;
D O I
10.1109/FOCS.2015.69
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove an omega(log n) lower bound on the conondeterministic communication complexity of the Clique vs. Independent Set problem introduced by Yannakakis (STOC 1988, JCSS 1991). As a corollary, this implies superpolynomial lower bounds for the Alon-Saks-Seymour conjecture in graph theory. Our approach is to first exhibit a query complexity separation for the decision tree analogue of the UP vs. coNP question-namely, unambiguous DNF width vs. CNF width-and then "lift" this separation over to communication complexity using a result from prior work.
引用
收藏
页码:1066 / 1076
页数:11
相关论文
共 50 条
  • [1] Clique versus independent set
    Bousquet, N.
    Lagoutte, A.
    Thomasse, S.
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2014, 40 : 73 - 92
  • [2] Sum-of-Squares Lower Bounds for Sparse Independent Set
    Jones, Chris
    Potechin, Aaron
    Rajendran, Goutham
    Tulsiani, Madhur
    Xu, Jeff
    [J]. 2021 IEEE 62ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2021), 2022, : 406 - 416
  • [3] CLIQUE POLYNOMIALS AND INDEPENDENT SET POLYNOMIALS OF GRAPHS
    HOEDE, C
    LI, XL
    [J]. DISCRETE MATHEMATICS, 1994, 125 (1-3) : 219 - 228
  • [4] Towards optimal lower bounds for clique and chromatic number
    Engebretsen, L
    Holmerin, J
    [J]. THEORETICAL COMPUTER SCIENCE, 2003, 299 (1-3) : 537 - 584
  • [5] Sum-of-Squares Lower Bounds for Planted Clique
    Meka, Raghu
    Potechin, Aaron
    Wigderson, Avi
    [J]. STOC'15: PROCEEDINGS OF THE 2015 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2015, : 87 - 96
  • [6] LOWER BOUNDS FOR THE CLIQUE AND THE CHROMATIC-NUMBERS OF A GRAPH
    EDWARDS, CS
    ELPHICK, CH
    [J]. DISCRETE APPLIED MATHEMATICS, 1983, 5 (01) : 51 - 64
  • [7] New analytical lower bounds on the clique number of a graph
    Stozhkov, Vladimir
    Pastukhov, Grigory
    Boginski, Vladimir
    Pasiliao, Eduardo L.
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2017, 32 (02): : 336 - 368
  • [8] NEW CLIQUE AND INDEPENDENT SET ALGORITHMS FOR CIRCLE GRAPHS
    APOSTOLICO, A
    ATALLAH, MJ
    HAMBRUSCH, SE
    [J]. DISCRETE APPLIED MATHEMATICS, 1992, 36 (01) : 1 - 24
  • [9] Linear vs. Semidefinite Extended Formulations: Exponential Separation and Strong Lower Bounds
    Fiorini, Samuel
    Massar, Serge
    Pokutta, Sebastian
    Tiwary, Hans Raj
    de Wolf, Ronald
    [J]. STOC'12: PROCEEDINGS OF THE 2012 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2012, : 95 - 106
  • [10] ALGORITHMIC LOWER BOUNDS FOR PROBLEMS PARAMETERIZED BY CLIQUE-WIDTH
    Fomin, Fedor V.
    Golovach, Petr A.
    Lokshtanov, Daniel
    Saurabh, Saket
    [J]. PROCEEDINGS OF THE TWENTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2010, 135 : 493 - 502