A trend pattern assessment approach to microarray gene expression profiling data analysis

被引:0
|
作者
Cao, Kajia [1 ]
Zhu, Qiuming
Iqbal, Javeed
Chan, John W. C.
机构
[1] Univ Nebraska, Dept Comp Sci, Omaha, NE 68182 USA
[2] Univ Nebraska Med Ctr, Dept Pathol & Microbiol, Omaha, NE 68105 USA
关键词
gene expression profiling; microarray data analysis; boundary points; dynamical patterns; trend evaluations; fisher's discriminate criterion;
D O I
10.1016/j.patrec.2007.03.006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study the problem of how to assess the reliability of a statistical measurement on data set containing unknown quantity of noises, inconsistencies, and outliers. A practical approach that analyzes the dynamical patterns (trends) of the statistical measurements through a sequential extreme-boundary-points (EBP) weed-out process is explored. We categorize the weed-out trend patterns (WOTP) and examine their relation to the reliability of the measurement. The approach is applied to the processes of extracting genes that are predictive to BCL2 translocations and to clinical survival outcomes of diffuse large B-cell lymphoma (DLBCL) from DNA Microarray gene expression profiling data sets. Fisher's Discriminate Criterion (FDC) is used as a statistical measurement in the processes. It is found that the weed-out trend analysis (WOTA) approach is effective for qualitatively assessing the statistics-based measurements in the experimentations conducted. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1472 / 1482
页数:11
相关论文
共 50 条
  • [1] Analysis of microarray experiments of gene expression profiling
    Tarca, Adi L.
    Romero, Roberto
    Draghici, Sorin
    AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2006, 195 (02) : 373 - 388
  • [2] A mixture model approach for the analysis of microarray gene expression data
    Allison, David B.
    Gadbury, Gary L.
    Heo, Moonseong
    Fernández, José R.
    Lee, Cheol-Koo
    Prolla, Tomas A.
    Weindruch, Richard
    Computational Statistics and Data Analysis, 2002, 38 (05): : 1 - 20
  • [3] A mixture model approach for the analysis of microarray gene expression data
    Allison, DB
    Gadbury, GL
    Heo, MS
    Fernández, JR
    Lee, CK
    Prolla, TA
    Weindruch, R
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2002, 39 (01) : 1 - 20
  • [4] Analysis of microarray gene expression data
    Pham, Tuan D.
    Wells, Christine
    Crane, Denis I.
    CURRENT BIOINFORMATICS, 2006, 1 (01) : 37 - 53
  • [5] Microarray gene expression data analysis
    Vachtsevanos, G
    Ding, YH
    Fairley, JA
    Gardner, AB
    Simeonova, P
    2004 2ND IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1 AND 2, 2004, : 105 - 108
  • [6] Embryonic gene expression profiling using microarray analysis
    Marjani, Sadie L.
    Le Bourhis, Daniel
    Vignon, Xavier
    Heyman, Yvan
    Everts, Robin E.
    Rodriguez-Zas, Sandra L.
    Lewin, Harris A.
    Renard, Jean-Paul
    Yang, Xiangzhong
    Tian, X. Cindy
    REPRODUCTION FERTILITY AND DEVELOPMENT, 2009, 21 (01) : 22 - 30
  • [7] Gene function analysis in osteosarcoma based on microarray gene expression profiling
    Zhao, Liang
    Zhang, Jinghua
    Tan, Hongyu
    Wang, Weidong
    Liu, Yilin
    Song, Ruipeng
    Wang, Limin
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2015, 8 (07): : 10401 - U1667
  • [8] FUZZY HYPER-CLUSTERING FOR PATTERN CLASSIFICATION IN MICROARRAY GENE EXPRESSION DATA ANALYSIS
    Liu, Jin
    Pham, Tuan D.
    BIOSIGNALS 2010: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON BIO-INSPIRED SYSTEMS AND SIGNAL PROCESSING, 2010, : 415 - 418
  • [9] Analysis of variance for gene expression microarray data
    Kerr, MK
    Martin, M
    Churchill, GA
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2000, 7 (06) : 819 - 837
  • [10] Microarray Data Analysis of Gene Expression Evolution
    Lin, Honghuang
    GENE REGULATION AND SYSTEMS BIOLOGY, 2009, 3 : 211 - 214