Unsupervised Sentiment Classification of Twitter Data using Emoticons

被引:1
|
作者
Hiremath, Savitha [1 ]
Manjula, S. H. [2 ]
Venugopal, K. R. [3 ]
机构
[1] Bangalore Univ, CMR Inst Technol, Bengaluru, India
[2] UVCE, Dept CSE, Bengaluru, India
[3] Bangalore Univ, Bengaluru, India
关键词
Emoticon; Sentiment analysis; Sentiment classification; Unsupervised classification; Twitter;
D O I
10.1109/ESCI50559.2021.9397026
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Twitter is a powerful social media where people share their opinion on various topics. Sentiment Analysis on twitter data gives the classification of opinion on a topic as positive, negative or neutral. Twitter messages are written informally and tweets are short. Hence, the classification of tweets by only considering the text part of the message does not give accurate results. To improve the classification accuracy we use Emotion Tokens like Emoticons or Emojis. Emotion Tokens are independent of language, grammar or size of the tweet. Considering Emotion tokens while classifying tweets will improve the accuracy of classification. In this paper, we propose unsupervised Sentiment classification on Twitter Data using Emoticons to improve the performance of classification.
引用
收藏
页码:444 / 448
页数:5
相关论文
共 50 条
  • [1] Role of Emoticons for Multidimensional Sentiment Analysis of Twitter
    Yamamoto, Yuki
    Kumamoto, Tadahiko
    Nadamoto, Akiyo
    [J]. 16TH INTERNATIONAL CONFERENCE ON INFORMATION INTEGRATION AND WEB-BASED APPLICATIONS & SERVICES (IIWAS 2014), 2014, : 107 - 115
  • [2] Sentiment Analysis Framework of Twitter Data Using Classification
    Khurana, Medha
    Gulati, Anurag
    Singh, Saurabh
    [J]. 2018 FIFTH INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED AND GRID COMPUTING (IEEE PDGC), 2018, : 459 - 464
  • [3] sentiment classification on twitter data using support vector machine
    Naz, Sheeba
    Sharan, Aditi
    Malik, Nidhi
    [J]. 2018 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE (WI 2018), 2018, : 676 - 679
  • [4] Multidimensional sentiment calculation method for Twitter based on emoticons
    Yamamoto, Yuki
    Kumamoto, Tadahiko
    Nadamoto, Akiyo
    [J]. INTERNATIONAL JOURNAL OF PERVASIVE COMPUTING AND COMMUNICATIONS, 2015, 11 (02) : 212 - +
  • [5] Analysis of Tweets with Emoticons for Sentiment Detection Using Classification Techniques
    Kaur, Ravneet
    Majumdar, Ayush
    Sharma, Priya
    Tiple, Bhavana
    [J]. DISTRIBUTED COMPUTING AND INTELLIGENT TECHNOLOGY, ICDCIT 2023, 2023, 13776 : 208 - 223
  • [6] Twitter Sentiment Classification using Stanford NLP
    Phand, Shital Anil
    Phand, Jeevan Anil
    [J]. 2017 1ST INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND INFORMATION MANAGEMENT (ICISIM), 2017, : 6 - 10
  • [7] Sentiment Analysis of Twitter Data based on Ordinal Classification
    Elbagir, Shihab
    Yang, Jing
    [J]. 2018 INTERNATIONAL CONFERENCE ON ALGORITHMS, COMPUTING AND ARTIFICIAL INTELLIGENCE (ACAI 2018), 2018,
  • [8] Sentiment classification of twitter data belonging to renewable energy using machine learning
    Jain, Achin
    Jain, Vanita
    [J]. JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2019, 40 (02): : 521 - 533
  • [9] Multi-Lingual Sentiment Analysis of twitter data by using classification algorithms
    Soni, Ankit Kumar
    [J]. PROCEEDINGS OF THE 2017 IEEE SECOND INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER AND COMMUNICATION TECHNOLOGIES (ICECCT), 2017,
  • [10] Twitter Sentiment Analysis for Large-Scale Data: An Unsupervised Approach
    Rafeeque Pandarachalil
    Selvaraju Sendhilkumar
    G. S. Mahalakshmi
    [J]. Cognitive Computation, 2015, 7 : 254 - 262