Data-driven control design for load disturbance rejection by prediction error identification

被引:2
|
作者
Filho, Ricardo S. [1 ]
Boeira, Emerson C. [1 ]
Campestrini, Luciola [1 ]
Eckhard, Diego [1 ]
机构
[1] Univ Fed Rio Grande do Sul, Programa Posgrad Engn Elect, BR-90035190 Porto Alegre, RS, Brazil
关键词
D O I
10.1109/ANZCC53563.2021.9628273
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a new direct data-driven control method for the load disturbance problem in a Model Reference Matching framework. It consists in embedding the controller's design under a prediction error approach, where a flexible reference model is also identified in order to guarantee the causality and stability of the ideal controller. Due to the complexity of the proposed approach, a dedicated iterative optimization algorithm is developed to properly solve the problem. Finally, the statistical properties of the obtained estimates are explored through simulation examples, where the enhancement obtained through the proposed methodology is compared to least-squares and instrumental variable solutions.
引用
收藏
页码:92 / 97
页数:6
相关论文
共 50 条
  • [1] Data-driven model reference control design by prediction error identification
    Campestrini, Luciola
    Eckhard, Diego
    Bazanella, Alexandre Sanfelice
    Gevers, Michel
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (06): : 2628 - 2647
  • [2] Data-Driven Control Design by Prediction Error Identification for Multivariable Systems
    Huff, Daniel D.
    Campestrini, Luciola
    Goncalves da Silva, Gustavo R.
    Bazanella, Alexandre S.
    [J]. JOURNAL OF CONTROL AUTOMATION AND ELECTRICAL SYSTEMS, 2019, 30 (04) : 465 - 478
  • [3] Data-Driven Control Design by Prediction Error Identification for Multivariable Systems
    Daniel D. Huff
    Luciola Campestrini
    Gustavo R. Gonçalves da Silva
    Alexandre S. Bazanella
    [J]. Journal of Control, Automation and Electrical Systems, 2019, 30 : 465 - 478
  • [4] Data-Driven control design by prediction error identification for a refrigeration system based on vapor compression
    Huff, Daniel D.
    Goncalves da Silva, Gustavo R.
    Campestrini, Luciola
    [J]. IFAC PAPERSONLINE, 2018, 51 (04): : 704 - 709
  • [5] Data-driven Correlation Approach Applied to Load Disturbance Rejection in a Thermal Process
    Pinto da Silva, Roger W.
    Eckhard, Diego
    [J]. 2021 AUSTRALIAN & NEW ZEALAND CONTROL CONFERENCE (ANZCC), 2021, : 200 - 205
  • [6] Data-Driven PID Control Tuning for Disturbance Rejection in a Hierarchical Control Architecture
    Bordignon, Virginia
    Campestrini, Luciola
    [J]. IFAC PAPERSONLINE, 2018, 51 (04): : 569 - 574
  • [7] Data-Driven Active Disturbance Rejection Control of Pendulum Cart Systems
    Roman, Raul-Cristian
    Radac, Mircea-Bogdan
    Tureac, Cornel
    Precup, Radu-Emil
    [J]. 2018 IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (CCTA), 2018, : 933 - 938
  • [8] Data-Driven Disturbance Rejection Predictive Control for SCR Denitrification System
    Wu, Xiao
    Shen, Jiong
    Sun, Shuanzhu
    Li, Yiguo
    Lee, Kwang Y.
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2016, 55 (20) : 5923 - 5930
  • [9] Data-driven disturbance observer-based control: an active disturbance rejection approach
    Harvey Rojas-Cubides
    John Cortés-Romero
    Jaime Arcos-Legarda
    [J]. Control Theory and Technology, 2021, 19 : 80 - 93
  • [10] Bionic Underwater Vehicle: A Data-Driven Disturbance Rejection Control Framework
    Wang, Kaihui
    Zou, Wei
    Ma, Ruichen
    Lv, Jiaqi
    Su, Hu
    Wang, Yu
    Ma, Hongxuan
    [J]. IEEE ROBOTICS & AUTOMATION MAGAZINE, 2024, 31 (01) : 18 - 28