Existence and multiplicity results for a class of Kirchhoff-Choquard equations with a generalized sign-changing potential

被引:7
|
作者
Boer, Eduardo de S. [1 ]
Miyagaki, Olimpio H. [1 ]
Pucci, Patrizia [2 ]
机构
[1] Univ Fed Sao Carlos, Dept Math, BR-13565905 Sao Carlos, SP, Brazil
[2] Univ Perugia, Dipartimento Matemat & Informat, I-06123 Perugia, Italy
基金
巴西圣保罗研究基金会;
关键词
Kirchhoff-Choquard equations; sign-changing potentials; exponential growth; variational techniques; ground state solution; SOBOLEV;
D O I
10.4171/RLM/984
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present work, we are concerned with the Kirchhoff-Choquard-type equation -M(parallel to del u parallel to(2)(2)) Delta u + Q(x)u + mu(V(|center dot|)* u(2))u = f(u) in R-2, for M: R -> R given by M(t) = a + bt, mu>0, V a sign-changing and possible unbounded potential, Q a continuous external potential, and a nonlinearity f with exponential critical growth. We prove existence and multiplicity of solutions in the nondegenerate case and guarantee the existence of solutions in the degenerate case.
引用
收藏
页码:651 / 675
页数:25
相关论文
共 50 条