A higher-dimensional generalization of the notion of vertex algebra

被引:2
|
作者
Li, HS [1 ]
机构
[1] Rutgers State Univ, Dept Math Sci, Camden, NJ 08102 USA
[2] Harbin Normal Univ, Dept Math, Harbin, Peoples R China
关键词
D O I
10.1016/S0021-8693(03)00018-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A higher-dimensional analogue of the notion of vertex algebra, called that of axiomatic G(n)-vertex algebra, is formulated with Borcherds' notion of G-vertex algebra as a motivation. Some examples are given and certain analogous duality properties are proved. It is proved that for any vector space W, any set of mutually local multi-variable vertex operators on W in a certain canonical way generates an axiomatic G(n)-vertex algebra with W as a natural module. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:1 / 41
页数:41
相关论文
共 50 条
  • [1] ON THE HIGHER-DIMENSIONAL 4-VERTEX THEOREM
    VARGAS, RU
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (10): : 1353 - 1358
  • [2] A new higher-dimensional generalization of the Schwarzian derivative
    Bouarroudj, S
    [J]. PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2001, (144): : 22 - 25
  • [3] Higher-dimensional representations of the reflection equation algebra
    Gurevich, DI
    Saponov, PA
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2004, 139 (01) : 486 - 499
  • [4] Higher-Dimensional Representations of the Reflection Equation Algebra
    D. I. Gurevich
    P. A. Saponov
    [J]. Theoretical and Mathematical Physics, 2004, 139 : 486 - 499
  • [5] Stability of global vertex solution in higher-dimensional spacetime
    Torii, Takashi
    Watabe, Hiroshi
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2008, 23 (14-15): : 2283 - 2284
  • [6] A HIGHER-DIMENSIONAL GENERALIZATION OF THE GROSS ZETA-FUNCTION
    KAPRANOV, M
    [J]. JOURNAL OF NUMBER THEORY, 1995, 50 (02) : 363 - 375
  • [7] A higher-dimensional generalization of the Lozi map: bifurcations and dynamics
    Bilal, Shakir
    Rannaswanny, Ramakrishna
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2023, 29 (9-12)
  • [8] A higher-dimensional Lie algebra and its decomposed subalgebras
    Zhang, Yufeng
    Yan, Wang
    [J]. PHYSICS LETTERS A, 2006, 360 (01) : 92 - 98
  • [9] A new higher-dimensional loop algebra and its application
    Xu, Xiuli
    Gong, Xinbo
    Zhang, Yufeng
    Song, Ming
    [J]. MODERN PHYSICS LETTERS B, 2008, 22 (18): : 1757 - 1765
  • [10] Higher-dimensional algebra IV: 2-tangles
    Baez, JC
    Langford, L
    [J]. ADVANCES IN MATHEMATICS, 2003, 180 (02) : 705 - 764