Improved Fatigue Strengths of Nanocrystalline Cu and Cu-Al Alloys

被引:58
|
作者
An, Xianghai [1 ]
Lin, Qingyun [1 ]
Wu, Shiding [1 ]
Zhang, Zhefeng [1 ]
机构
[1] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd, Shenyang 110016, Peoples R China
来源
MATERIALS RESEARCH LETTERS | 2015年 / 3卷 / 03期
基金
中国国家自然科学基金;
关键词
Nanocrystalline; Stacking Fault Energy; Fatigue Strength; Fatigue Mechanism; Severe Plastic Deformation; ULTRAFINE-GRAINED COPPER; STACKING-FAULT ENERGY; SEVERE PLASTIC-DEFORMATION; HIGH-PRESSURE TORSION; CYCLIC DEFORMATION; MICROSTRUCTURAL EVOLUTION; MECHANICAL-PROPERTIES; ZN ALLOYS; METALS; DUCTILITY;
D O I
10.1080/21663831.2015.1029645
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Increasing the fatigue strengths of high-strength materials, especially their endurance limits is essentially challenging. The fatigue strengths of nanocrystalline (NC) Cu and Cu-Al alloys processed by high-pressure torsion were prominently enhanced with a decrease in stacking fault energy. This remarkable escalation can be attributed not only to their significantly increased tensile strengths in macro-scale, but also to the essentially improved microstructure stability and reduced strain localization within shear bands in microscale. Owing to the limitation of their intrinsic fatigue mechanisms, the fatigue limits of NC Cu and Cu-Al alloys cannot always acquire appreciable improvement with their monotonic strengths.
引用
收藏
页码:135 / 141
页数:7
相关论文
共 50 条
  • [1] Elemental separation in nanocrystalline Cu-Al alloys
    Wang, Y. B.
    Liao, X. Z.
    Zhao, Y. H.
    Cooley, J. C.
    Horita, Z.
    Zhu, Y. T.
    [J]. APPLIED PHYSICS LETTERS, 2013, 102 (23)
  • [2] Exploring the fatigue strength improvement of Cu-Al alloys
    Liu, R.
    Tian, Y. Z.
    Zhang, Z. J.
    Zhang, P.
    An, X. H.
    Zhang, Z. F.
    [J]. ACTA MATERIALIA, 2018, 144 : 613 - 626
  • [3] ORDERING IN CU-AL ALLOYS
    ZUBCHENKO, VS
    KULISH, NP
    PETRENKO, PV
    TATAROV, AA
    [J]. PHYSICS OF METALS, 1985, 5 (05): : 934 - 942
  • [4] Preparing bulk nanocrystalline Cu-Al alloys via rotary swaging
    Zhou, Kaixuan
    Zhao, Yonghao
    Mao, Qingzhong
    Zhu, Binpeng
    Sun, Guosheng
    Li, Shunqiang
    Liu, Jizi
    [J]. JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2024, 330
  • [5] Thermal behavior of Cu-Al alloys near the α-Cu-Al solubility limit
    Adorno, AT
    Guerreiro, MR
    Benedetti, AV
    [J]. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2001, 65 (01): : 221 - 229
  • [6] Enhanced cyclic deformation responses of ultrafine-grained Cu and nanocrystalline Cu-Al alloys
    An, X. H.
    Wu, S. D.
    Wang, Z. G.
    Zhang, Z. F.
    [J]. ACTA MATERIALIA, 2014, 74 : 200 - 214
  • [7] Synthesis and characterization of nanocrystalline Cu-Al coatings
    Lau, ML
    He, J
    Schweinfest, R
    Rühle, M
    Levi, CG
    Lavernia, EJ
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2003, 347 (1-2): : 231 - 242
  • [8] THERMOPOWER AND RESISTIVITY OF CU-AL ALLOYS
    SINHA, THD
    PRASAD, RS
    [J]. INDIAN JOURNAL OF PURE & APPLIED PHYSICS, 1971, 9 (04) : 246 - &
  • [9] ON THE FORMATION OF ALLOYS IN SYSTEMS CU-AL AND NI-CU
    KAMINSKII, PP
    KUZNETSOV, VM
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1987, 30 (04): : 39 - 43
  • [10] DIFFUSION BEHAVIOR IN CU-RICH CU-AL ALLOYS
    ROMIG, AD
    GOLDSTEIN, JI
    [J]. JOURNAL OF METALS, 1982, 35 (12): : A37 - A37